Монотонные функции, определение. Достаточное условие монотонности функции. Возрастание, убывание и экстремумы функции

Функция y=f(x) называется возрастающей на интервале (a;b) , если для любых x 1 и x 2 x 1 , справедливо f(x 1) Например, функции y=a x , y=log a x при a>1, y=arctg x, y=arcsin x, (nÎN) возрастают на всей своей области определения.

График возрастающей функции

· Функция y = f(x) называется убывающей на интервале (a;b), если для любых x 1 и x 2 из этого интервала таких, что x 1 , справедливо f(x 1)>f(x 2). Например, функции y=a x , y=log a x при 0<a<1, y=arcctg x, y=arccos x убывают на всей своей области определения.

График убывающей функции

· Убывающие и возрастающие функции вместе образуют класс монотонных функций. Монотонные функции обладают рядом специальных свойств.

Функция f(х), монотонная на отрезке [а,b ], ограничена на этом отрезке;

· сумма возрастающих (убывающих) функций является возрастающей (убывающей) функцией;

· если функция f возрастает (убывает) и n – нечетное число, то также возрастает (убывает);

· если f"(x)>0 для всех xÎ(a,b), то функция y=f(x) является возрастающей на интервале (a,b);

· если f"(x)<0 для всех xÎ(a,b), то функция y=f(x) является убывающей на интервале (a,b);

· если f(x) – непрерывная и монотонная функция на множестве Х , то уравнение f(x)=C , где С – данная константа, может иметь на Х не более одного решения;

· если на области определения уравнения f(x)=g(x) функция f(x) возрастает, а функция g(x) убывает, то уравнение не может иметь более одного решения.

Теорема. (достаточное условие монотонности функции). Если непрерывная на отрезке [а, b ] функция у = f (х ) в каждой точке интервала (а, b ) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b ].

Доказательство. Пусть >0 для всех хÎ (а,b ). Рассмотрим два произвольных значения x 2 > x 1 , принадлежащих [а, b ]. По формуле Лагранжа х 1 <с < х 2 . (с ) > 0 и х 2 – х 1 > 0, поэтому >0, откуда > , то есть функция f(х) возрастает на отрезке [а, b ]. Аналогично доказывается вторая часть теоремы.

Теорема 3. (необходимый признак существования экстремума функции). Если дифференцируемая в точке c функция у = f (х ) имеет в этой точке экстремум, то .

Доказательство. Пусть, например, функция у = f (х ) имеет в точке c максимум. Это означает, что существует такая проколотая окрестность точки c, что для всех точек x этой окрестности выполняется f (x ) < f (c ), то есть f (c ) – наибольшее зна­чение функции в этой окрестности. Тогда по теореме Ферма .

Аналогично доказывается случай минимума в точке c.

Замечание. Функция может иметь экстремум в точке, в которой ее производная не существует. Например, функция имеет минимум в точке x = 0, хотя не существует. Точки, в которых производная функции равна нулю или не сущест­вует, называются критическими точками функции. Однако не во всех критиче­ских точках функция имеет экстремум. Например, функция у = x 3 не имеет экс­тремумов, хотя ее производная =0.

Теорема 4. (достаточный признак существования экстремума). Если непрерывная функция у = f (x ) имеет производную во всех точках некоторого интервала, содержащего критическую точку С (за исключением, может быть, самой этой точки), и если производная при переходе аргумента слева направо через критическую точку С меняет знак с плюса на минус, то функция в точке С имеет максимум, а при перемене знака с минуса на плюс – минимум.

Доказательство. Пусть c – критическая точка и пусть, например, при переходе аргумента через точку c меняет знак с плюса на минус. Это означает, что на некотором интервале(c–e; c) функция возрастает, а на интервале (c; c+e) – убывает (при e >0). Следовательно, в точке с функция имеет максимум. Аналогично доказывается случай минимума.

Замечание. Если производная не меняет знака при переходе аргумента через критическую точку, то функция в этой точке не имеет экстремума.

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Определения

Пусть дана функция Тогда

. . . .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими , а убывающие функции невозраста́ющими . Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль . Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

См. также


Wikimedia Foundation . 2010 .

  • Слюна
  • Горьковская железная дорога

Смотреть что такое "Монотонная функция" в других словарях:

    Монотонная функция - — функция f(x), которая может быть либо возрастающей на некотором промежутке (то есть, чем больше любое значение аргумента на этом промежутке, тем больше значение функции), либо убывающей (в противоположном случае).… …

    МОНОТОННАЯ ФУНКЦИЯ - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Большой Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - (monotonie function) Функция, в которой по мере роста значения аргумента значение функции всегда изменяется в том же направлении. Следовательно, если у=f(x), то либо dy/dx > 0 для всех значений х, и в этом случае у является возрастающей… … Экономический словарь

    Монотонная функция - (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

    монотонная функция - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает). * * * МОНОТОННАЯ ФУНКЦИЯ МОНОТОННАЯ ФУНКЦИЯ, функция, которая при возрастании аргумента либо всегда возрастает (или… … Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - функция одного переменного, определенная на нек ром подмножестве действительных чисел, приращение к рой при не меняет знака, т. е. либо всегда неотрицательно, либо всегда неположительно. Если строго больше (меньше) нуля, когда то М. ф. наз.… … Математическая энциклопедия

    МОНОТОННАЯ ФУНКЦИЯ - функция, к рая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Естествознание. Энциклопедический словарь

    Монотонная последовательность - это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств.… … Википедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

Мы впервые познакомились в курсе алгебры 7-го класса. Глядя на график функции, мы снимали соответствующую информацию: если двигаясь по графику слева направо мы в то же время движемся снизу вверх (как бы поднимаемся в горку), то мы объявляли функцию возрастающей (рис. 124); если же мы движемся сверху вниз (спускаемся с горки), то мы объявляли функцию убывающей (рис. 125).

Однако математики не очень жалуют такой способ исследования свойств функции. Они считают, что определения понятий не должны опираться на рисунок, - чертеж должен лишь иллюстрировать то или иное свойство функции на ее графике . Дадим строгие определения понятий возрастания и убывания функции.

Определение 1. Функцию у = f(x) называют возрастающей на промежутке X, если из неравенства х 1 < х 2 - где хг и х2 - любые две точки промежутка X, следует неравенство f(x 1) < f(x 2).

Определение 2. Функцию у = f(x) называют убывающей на промежутке X, если из неравенства х 1 < х 2 , где х 1 и х 2 - любые две точки промежутка X, следует неравенство f(x 1) > f(x 2).

На практике удобнее пользоваться следующими формулировками:

функция возрастает, если большему значению аргумента соответствует большее значение функции;
функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Используя эти определения и установленные в § 33 свойства числовых неравенств, мы сможем обосновать выводы о возрастании или убывании ранее изученных функций.

1. Линейная функция у = kx +m

Если k > 0, то функция возрастает на всей (рис. 126); если k < 0, то функция убывает на всей числовой прямой (рис. 127).

Доказательство. Положим f(х) = kx +m. Если х 1 < х 2 и k > О, то, согласно свойству 3 числовых неравенств (см. § 33), kx 1 < kx 2 . Далее, согласно свойству 2, из kx 1 < kx 2 следует, что kx 1 + m < kx 2 + m, т. е. f(х 1) < f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) < f(x 2). Это и означает возрастание функции у = f(х), т.е. линейной функции у = kx+ m.

Если же х 1 < х 2 и k < 0, то, согласно свойству 3 числовых неравенств, kx 1 > kx 2 , а согласно свойству 2, из kx 1 > kx 2 следует, что kx 1 + m> kx 2 + т.

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2). Это и означает убывание функции у = f(x), т. е. линейной функции у = kx + m.

Если функция возрастает (убывает) во всей своей области определения, то ее можно называть возрастающей (убывающей), не указывая промежутка. Например, про функцию у = 2х - 3 можно сказать, что она возрастает на всей числовой прямой, но можно сказать и короче: у = 2х - 3 - возрастающая
функция.

2. Функция у = х2

1. Рассмотрим функцию у = х 2 на луче . Возьмем два неположительных числа х 1 и х 2 , таких, что х 1 < х 2 . Тогда, согласно свойству 3 числовых неравенств, выполняется неравенство - х 1 > - х 2 . Так как числа - х 1 и - х 2 неотрицательны, то, возведя в квадрат обе части последнего неравенства, получим неравенство того же смысла (-х 1) 2 > (-х 2) 2 , т.е. Это значит, что f(х 1) >f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2).

Поэтому функция у = х 2 убывает на луче (- 00 , 0] (рис. 128).

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 - , то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).

Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 - отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравенства - положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .

Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.



Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 133).

Прочитаем график функции у = f(x).

1. Область определения функции - вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче }