Система неравенств как решать примеры. Линейные неравенства, примеры, решения

Урок и презентация на тему: "Системы неравенств. Примеры решений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное учебное пособие для 9 класса "Правила и упражнения по геометрии"
Электронное учебное пособие "Понятная геометрия" для 7-9 классов

Система неравенств

Ребята, вы изучили линейные и квадратные неравенства, научились решать задачи на эти темы. Теперь давайте перейдем к новому понятию в математике – система неравенств. Система неравенств похожа на систему уравнений. Вы помните системы уравнений? Системы уравнений вы изучали в седьмом классе, постарайтесь вспомнить, как вы их решали.

Введем определение системы неравенств.
Несколько неравенств с некоторой переменой х образуют систему неравенств, если нужно найти все значения х, при которых каждое из неравенств образует верное числовое выражение.

Любое значение x, при которых каждое неравенство принимает верное числовое выражение, является решением неравенства. Также может называться и частным решением.
А что есть частное решение? Например, в ответе мы получили выражение х>7. Тогда х=8, или х=123, или какое-либо другое число большее семи – частное решение, а выражение х>7 – общее решение. Общее решение образуется множеством частных решений.

Как мы объединяли систему уравнений? Правильно, фигурной скобкой, так вот с неравенствами поступают также. Давайте рассмотрим пример системы неравенств: $\begin{cases}x+7>5\\x-3
Если система неравенств состоит из одинаковых выражений, например, $\begin{cases}x+7>5\\x+7
Так, что же значит: найти решение системы неравенств?
Решение неравенства – это множество частных решений неравенства, которые удовлетворяют сразу обоим неравенствам системы.

Общий вид системы неравенств запишем в виде $\begin{cases}f(x)>0\\g(x)>0\end{cases}$

Обозначим $Х_1$ – общее решение неравенства f(x)>0.
$Х_2$ – общее решение неравенства g(x)>0.
$Х_1$ и $Х_2$ - это множество частных решений.
Решением системы неравенств будут числа, принадлежащие, как $Х_1$, так и $Х_2$.
Давайте вспомним операции над множествами. Как нам найти элементы множества, принадлежащие сразу обоим множествам? Правильно, для этого есть операция пересечения. Итак, решением нашего неравенство будет множество $А= Х_1∩ Х_2$.

Примеры решений систем неравенств

Давайте посмотрим примеры решения систем неравенств.

Решите систему неравенств.
а) $\begin{cases}3x-1>2\\5x-10 b) $\begin{cases}2x-4≤6\\-x-4
Решение.
а) Решим каждое неравенство отдельно.
$3х-1>2; \; 3x>3; \; x>1$.
$5x-10
Отметим наши промежутки на одной координатной прямой.

Решением системы будет отрезок пересечения наших промежутков. Неравенство строгое, тогда отрезок будет открытым.
Ответ: (1;3).

Б) Также решим каждое неравенство отдельно.
$2x-4≤6; 2x≤ 10; x ≤ 5$.
$-x-4 -5$.


Решением системы будет отрезок пересечения наших промежутков. Второе неравенство строгое, тогда отрезок будет открытым слева.
Ответ: (-5; 5].

Давайте обобщим полученные знания.
Допустим, необходимо решить систему неравенств: $\begin{cases}f_1 (x)>f_2 (x)\\g_1 (x)>g_2 (x)\end{cases}$.
Тогда, интервал ($x_1; x_2$) – решение первого неравенства.
Интервал ($y_1; y_2$) – решение второго неравенства.
Решение системы неравенств – есть пересечение решений каждого неравенства.

Системы неравенств могут состоять из неравенств не только первого порядка, но и любых других видов неравенств.

Важные правила при решении систем неравенств.
Если одно из неравенств системы не имеет решений, то и вся система не имеет решений.
Если одно из неравенств выполняется для любых значений переменой, то решением системы будет решение другого неравенства.

Примеры.
Решить систему неравенств:$\begin{cases}x^2-16>0\\x^2-8x+12≤0 \end{cases}$
Решение.
Решим каждое неравенство по отдельности.
$x^2-16>0$.
$(x-4)(x+4)>0$.



Решим второе неравенство.
$x^2-8x+12≤0$.
$(x-6)(x-2)≤0$.

Решением неравенства будет промежуток.
Нарисуем оба промежутка на одной прямой и найдем пересечение.
Пересечение промежутков - отрезок (4; 6].
Ответ: (4;6].

Решить систему неравенств.
а) $\begin{cases}3x+3>6\\2x^2+4x+4 б) $\begin{cases}3x+3>6\\2x^2+4x+4>0\end{cases}$.

Решение.
а) Первое неравенство имеет решение х>1.
Найдем дискриминант для второго неравенства.
$D=16-4 * 2 * 4=-16$. $D Вспомним правило, когда одно из неравенств не имеет решений, то вся система не имеет решений.
Ответ: Нет решений.

Б) Первое неравенство имеет решение х>1.
Второе неравенство больше нуля при всех х. Тогда решение системы совпадает с решением первого неравенства.
Ответ: х>1.

Задачи на системы неравенств для самостоятельного решения

Решите системы неравенств:
а) $\begin{cases}4x-5>11\\2x-12 б) $\begin{cases}-3x+1>5\\3x-11 в) $\begin{cases}x^2-25 г) $\begin{cases}x^2-16x+55>0\\x^2-17x+60≥0 \end{cases}$
д) $\begin{cases}x^2+36

Теория:

При решении неравенств используют следующие правила:

1. Любой член неравенства можно перенести из одной части
неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.

2. Обе части неравенства можно умножить или разделить на одно
и то же положительное число, не изменив при этом знак неравенства.

3. Обе части неравенства можно умножить или разделить на одно
и то же отрицательное число, изменив при этом знак неравенства на
противоположный.

Решить неравенство − 8 x + 11 < − 3 x − 4
Решение.

1. Перенесём член − 3 x в левую часть неравенства, а член 11 — в правую часть неравенства, при этом поменяем знаки на противоположные у − 3 x и у 11 .
Тогда получим

− 8 x + 3 x < − 4 − 11

− 5 x < − 15

2. Разделим обе части неравенства − 5 x < − 15 на отрицательное число − 5 , при этом знак неравенства < , поменяется на > , т.е. мы перейдём к неравенству противоположного смысла.
Получим:

− 5 x < − 15 | : (− 5 )

x > − 15 : (− 5 )

x > 3

x > 3 — решение заданного неравенства.

Обрати внимание!

Для записи решения можно использовать два варианта: x > 3 или в виде числового промежутка.

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

x ∈ (3 ; + ∞ )

Ответ: x > 3 или x ∈ (3 ; + ∞ )

Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I . Квадратные неравенства , то есть неравенства вида

ax 2 + bx + c > 0 (< 0), a ≠ 0.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x - x 1) (x - x 2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x - x 1) (x - x 2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

  • Решить неравенство. x 2 + x - 6 > 0.

Разложим квадратный трехчлен на множители (x + 3) (x - 2) > 0

Ответ: x (-∞; -3) (2; +∞).

2) (x - 6) 2 > 0

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6) (6; +∞).

3) x² + 4x + 15 < 0.

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х - 2х² < 0. Ответ:
  2. 3х² - 12х + 12 ≤ 0. Ответ:
  3. 3х² - 7х + 5 ≤ 0. Ответ:
  4. 2х² - 12х + 18 > 0. Ответ:
  5. При каких значениях a неравенство

x² - ax > выполняется для любых х? Ответ:

  1. II . Рациональные неравенства высших степеней, то есть неравенства вида

a n x n + a n-1 x n-1 + … + a 1 x + a 0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

a n (x - x 1) (x - x 2) ·…· (x - x n) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

1) Решить неравенство x 4 - 6x 3 + 11x 2 - 6x < 0.

x 4 - 6x 3 + 11x 2 - 6x = x (x 3 - 6x 2 + 11x -6) = x (x 3 - x 2 - 5x 2 + 5x +6x - 6) =x (x - 1)(x 2 -5x + 6) =

x (x - 1) (x - 2) (x - 3). Итак, x (x - 1) (x - 2) (x - 3)<0

Ответ: (0; 1) (2; 3).

2) Решить неравенство (x -1) 5 (x + 2) (x - ½) 7 (2x + 1) 4 <0.

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = - ½.

В точке х = - ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1) 4 не меняет знак при переходе через точку х = - ½.

Ответ: (-∞; -2) (½; 1).

3) Решить неравенство: х 2 (х + 2) (х - 3) ≥ 0.

Данное неравенство равносильно следующей совокупности

Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} {0} }