Научные открытия, сделанные во сне. Бионическая рука iLIMB. Бионические контактные линзы

Многочисленные открытия, сделанные учеными во время сна, заставляют задуматься: то ли великим людям гениальные сны снятся чаще, чем простым менеджерам, то ли у них просто есть возможность их реализовать. Но все мы знаем, что «все возможно» правило одно на всех, так же как периодически всем сняться сны. Другое дело, что великие ученые не просто смотрят на свое подсознание в момент глубокого сна, они продолжают работать, и их размышления во сне, вероятно, более глубинные, чем наяву.

Рене Декарт (1596-1650), великий французский ученый, философ, математик, физик и физиолог

Он уверял, что на путь великих открытий его направили вещие сны, увиденные в возрасте двадцати трех лет. 10 ноября 1619 года в сновидении он взял в руки книгу, написанную на латыни, на первой же странице которой был выведен сокровенный вопрос: «Каким путем мне идти?». В ответ же, по словам Декарта, «Дух Истины раскрыл мне во сне взаимосвязь всех наук». После в течение трех столетий подряд его работы оказывали огромное влияние на науку.


Сновидение Нильса Бора принесло ему Нобелевскую премию, еще на студенческой скамье умудрился сделать открытие, изменившее научную картину мира. Ему приснилось, что он находится на Солнце - сияющем сгустке огнедышащего газа, - а планеты со свистом проносятся мимо него. Они вращались вокруг Солнца и были связаны с ним тонкими нитями. Неожиданно газ затвердел, «солнце» и «планеты» уменьшились, а Бор, по его собственному признанию, проснулся как от толчка: он понял, что открыл модель атома, которую так давно искал. «Солнце» из его сна было ничем иным, как неподвижным ядром, вокруг которого вращались «планеты»-электроны!

Что на самом деле произошло во сне Дмитрия Менделеева(1834-1907)

Дмитрий Менделеев увидел свою таблицу во сне, и его пример – не единственный. Многие ученые признавались в том, что своими открытиями обязаны своим удивительным снам. Из их снов в нашу жизнь пришла не только таблица Менделеева, но и атомная бомба.
«Нет таких таинственных явлений, которые нельзя было бы понять» – утверждал Рене Декарт (1596-1650), великий французский ученый, философ, математик, физик и физиолог. Однако как минимум одно необъяснимое явление было хорошо известно ему на личном примере. Автор множества открытий, сделанных за свою жизнь в различных областях, Декарт не скрывал, что толчком для его разносторонних изысканий послужило несколько вещих снов, увиденных им в возрасте двадцати трех лет.
Дата одного из таких снов известна точно: 10 ноября 1619 года. Именно в ту ночь Рене Декарту открылось основное направление всех его будущих работ. В том сновидении он взял в руки книгу, написанную на латыни, на первой же странице которой был выведен сокровенный вопрос: «Каким путем мне идти?». В ответ же, по словам Декарта, «Дух Истины раскрыл мне во сне взаимосвязь всех наук».
Каким образом это произошло, теперь остается только гадать, достоверно известно лишь одно: исследования, толчком к которым послужили его сны, принесли Декарту славу, сделав его крупнейшим ученым своего времени. В течение трех столетий подряд его работы оказывали огромное влияние на науку, а ряд его работ по физике и математике остаются актуальными и до сих пор.

Оказывается, сон Менделеева стал широко известен с легкой руки А.А.Иностранцева – современника и знакомого ученого, который как-то раз зашел к нему в кабинет и застал его в самом мрачном состоянии. Как вспоминал позднее Иностранцев, Менделеев пожаловался ему на то, что «все в голове сложилось, но выразить таблицей не могу». А позже пояснил, что он трое суток подряд работал без сна, но все попытки сложить мысли в таблицу оказались неудачными.
В конце концов, ученый, крайне утомленный, все-таки лег в кровать. Именно этот сон впоследствии и вошел в историю. По словам Менделеева, все происходило так: «вижу во сне таблицу, где элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги, – только в одном месте впоследствии оказалась нужной поправка».
Но самое интригующее заключается в том, что в то время, когда Менделееву приснилась периодическая система, атомные массы многих элементов были установлены неверно, а многие элементы вообще были не исследованы. Другими словами, отталкиваясь только лишь от известных ему научных данных, Менделеев просто-напросто не смог бы сделать свое гениальное открытие! А это значит, что во сне ему пришло не просто озарение. Открытие периодической системы, для которого у ученых того времени попросту не хватало знаний, можно смело сравнить с предвиденьем будущего.
Все эти многочисленные открытия, сделанные учеными во время сна, заставляют задуматься: то ли великим людям сны-откровения снятся чаще, чем простым смертным, то ли у них просто есть возможность их реализовать. А может быть, великие умы просто мало думают о том, что скажут о них другие, и потому не стесняются всерьез прислушиваться к подсказкам своих снов? Ответом тому – призыв Фридриха Кекуле, которым он завершил свое выступление на одном из научных съездов: «Давайте изучать свои сны, джентльмены, и тогда мы, возможно, придем к истине!».

Нильс Бор (1885-1962), великий датский ученый, основоположник атомной физики


Великий датский ученый, основоположник атомной физики, Нильс Бор (1885-1962) еще на студенческой скамье умудрился сделать открытие, изменившее научную картину мира.
Однажды ему приснилось, что он находится на Солнце – сияющем сгустке огнедышащего газа – а планеты со свистом проносятся мимо него. Они вращались вокруг Солнца и были связаны с ним тонкими нитями. Неожиданно газ затвердел, «солнце» и «планеты» уменьшились, а Бор, по его собственному признанию, проснулся, как от толчка: он понял, что открыл модель атома, которую так давно искал. «Солнце» из его сна было ничем иным, как неподвижным ядром, вокруг которого вращались «планеты»-электроны!
Стоит ли говорить, что планетарная модель атома, увиденная Нильсом Бором во сне, стала основой всех последующих работ ученого? Она положила начало атомной физике, принеся Нильсу Бору Нобелевскую премию и мировое признание. Сам же ученый всю свою жизнь считал своим долгом бороться против применения атома в военных целях: джинн, выпущенный на свободу его сном, оказался не только могущественным, но и опасным…
Впрочем, эта история – лишь одна в длинном ряду многих. Так, рассказ о не менее удивительном ночном озарении, продвинувшем мировую науку вперед принадлежит еще одному Нобелевскому лауреату, австрийскому физиологу Отто Леви (1873-1961).

Отто Леви (1873-1961), австрийский физиолог, нобелевский лауреат за заслуги в области медицины и психологии

Нервные импульсы в организме передаются электрической волной – так ошибочно полагали медики вплоть до открытия, сделанного Леви. Еще будучи молодым ученым, он впервые не согласился с маститыми коллегами, смело предположив, что к передаче нервного импульса причастна химия. Но кто будет слушать вчерашнего студента, опровергающего научных светил? Тем более что у теории Леви, при всей ее логичности, не было практически никаких доказательств.
Лишь семнадцать лет спустя Леви, наконец, смог осуществить эксперимент, со всей очевидностью доказывавший его правоту. Идея же эксперимента пришла к нему неожиданно – во сне. С педантичностью истинного ученого Леви подробно рассказал об озарении, посещавшем его на протяжении двух ночей подряд:
«…В ночь перед Пасхальным Воскресеньем 1920 года я проснулся и сделал несколько заметок на обрывке бумаги. Затем я снова уснул. Утром у меня возникло ощущение, что этой ночью я записал что-то очень важное, но я не смог расшифровать свои каракули. Следующей ночью, в три часа, идея снова вернулась ко мне. Это был замысел эксперимента, который помог бы определить, правомочна ли моя гипотеза химической трансмиссии… Я тут же поднялся, пошел в лабораторию и на лягушачьем сердце поставил эксперимент, который видел во сне… Его результаты стали основой теории химической трансмиссии нервного импульса».
Исследования, немалый вклад в который внесли сны, принесли Отто Леви Нобелевскую премию в 1936 году за заслуги в области медицины и психологии.
Еще один знаменитый химик – Фридрих Август Кекуле – не стеснялся во всеуслышание признавать, что именно благодаря сну ему удалось открыть молекулярную структуру бензола, над которой до этого он безуспешно бился много лет.

Фридрих Август Кекуле (1829-1896), знаменитый немецкий химик-органик

По собственному признанию Кекуле, много лет он пытался найти молекулярную структуру бензола, однако все его знания и опыт оказались бессильны. Проблема так мучила ученого, что порой он не переставал думать о ней ни ночью, ни днем. Нередко ему снилось, что он уже сделал открытие, однако все эти сны неизменно оказывались лишь обычным отражением его дневных мыслей и забот.
Так было вплоть до холодной ночи 1865 года, когда Кекуле задремал дома у камина и увидел удивительный сон, о котором впоследствии рассказывал так: «Перед моими глазами прыгали атомы, они сливались в более крупные структуры, похожие на змей. Как завороженный, я следил за их танцем, как вдруг одна из «змей» схватила себя за хвост и дразняще затанцевала перед моими глазами. Будто пронзенный молнией, я проснулся: структура бензола представляет из себя замкнутое кольцо!».

Это открытие было переворотом для химии того времени.
Сон настолько поразил Кекуле, что он рассказал его своим коллегам-химикам на одном из научных съездов и даже призвал их внимательнее относиться к своим сновидениям. Безусловно, под этими словами Кекуле подписалось бы немало ученых, и в первую очередь его коллега, русский химик Дмитрий Менделеев, чье открытие, сделанное, во сне, широко известно всем.
Действительно, каждый слышал о том, что свою периодическую таблицу химических элементов Дмитрий Иванович Менделеев «подсмотрел» во сне. Однако как именно это произошло? Об этом в своих мемуарах подробно рассказал один из его друзей.

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь, она оказалась правой. Наука и медицина аж с 1987 не производили, действительно, новых видов антибиотиков. Однако, болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее, в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы, под воздействием этого лекарства, не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин, к настоящему моменту, доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Медики вырастили новые голосовые связки

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки, фактически, из ничего.
Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно, ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать, почти, как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако, новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако, ученые, в этом случае, были ограничены в своих возможностях.

Относительно недавно, ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако, это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только, исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя, полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно, эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако, их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако, ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого, лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот, список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако, практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и, тем самым, подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время, наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату, можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда, по-прежнему, проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности, для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако, биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому, открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако, метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту, созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка, вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем, ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что, в конечном итоге, удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

Изменили наш мир и существенно повлияли на жизнь многих поколений.

Великие ученые физики и их открытия

(1856-1943) — изобретатель в области электротехники и радиотехники сербского происхождения. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.
Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу.

(1643-1727) — один из отцов классической физики. Обосновал движение планет Солнечной системы вокруг Солнца, а также наступление приливов и отливов. Ньютон создал фундамент для современной физической оптики. Верхом его работ является известный закон всемирного тяготения.

Джон Дальтон — английский физико-химик. Открыл закон равномерного расширения газов при нагревании, закон кратных отношений, явление полимерии (на примере этилена и бутилена).Создатель атомной теории строения вещества.

Майкл Фарадей (1791 - 1867) - английский физик и химик, основоположник учения об электромагнитном поле. Сделал за свою жизнь столько научных открытий, что их хватило бы десятку ученых, чтобы обессмертить свое имя.

(1867 - 1934) - физик и химик польского происхождения. Совместно с мужем открыла элементы радий и полоний. Занималась проблемами радиоактивности.

Роберт Бойль (1627 - 1691) - английский физик, химик и богослов. Совместно с Р. Тоунлеем установил зависимость объёма одной и той же массы воздуха от давления при неизменной температуре (Бойля - Мариотта закон).

Эрнест Резерфорд — английский физик, разгадал природу индуцированной радиоактивности, открыл эманацию тория, радиоактивный распад и его закон. Резерфорда нередко справедливо называют одним из титанов физики ХХ века.

— немецкий физик, создатель общей теории относительности. Предположил, что все тела не притягивают друг друга, как считалось со времен Ньютона, а искривляют окружающее пространство и время. Эйнштейн написал больше 350 работ по физике. Является создателем специальной (1905) и общей теории относительности (1916), принципа эквивалентности массы и энергии (1905). Разработал множество научных теорий: квантового фотоэффекта и квантовой теплоемкости. Вместе с Планком, разработал основы квантовой теории, представляющие основой современной физике.

Александр Столетов — русский физик, нашел, что величина фототока насыщения пропорциональна световому потоку, падающему на катод. Вплотную подошел к установлению законов электрических разрядов в газах.

(1858-1947) - немецкий физик, создатель квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

Поль Дирак — английский физик, открыл статистическое распределение энергии в системе электронов. Получил Нобелевскую премию по физике «за открытие новых продуктивных форм атомной теории».

Главный антигерой современности – рак – кажется, все-таки попался в сети ученых. Израильские специалисты из Бар-Иланского университета рассказали о своем научном открытии: они создали нанороботов, способных убивать раковые клетки . Киллеры состоят из ДНК, натурального биосовместимого и биоразлагаемого материала, и могут нести в себе биоактивные молекулы и лекарства. Роботы способны перемещаться с током крови и распознавать злокачественные клетки, тут же уничтожая их. Этот механизм схож с работой нашего иммунитета, но более точен.

Ученые провели уже 2 стадии эксперимента.

  • Вначале они подсадили нанороботов в пробирку со здоровыми и раковыми клетками. Уже через 3 дня половина злокачественных была уничтожена, а ни одна здоровая не пострадала!
  • Затем исследователи ввели охотников в таракана (ученые вообще испытывают к усачам странную любовь, так что те еще появятся в этой статье), доказав, что роботы могут успешно собираться из фрагментов ДНК и точно находить клетки-мишени, необязательно раковые, внутри живого существа.
В испытаниях на людях, которые начнутся в этом году, примут участие больные с крайне неблагоприятным прогнозом (всего несколько месяцев жизни, по оценкам врачей). Если расчеты ученых окажутся верными, нанокиллеры справятся с онкологией в течение месяца.

Изменение цвета глаз

Проблему улучшения или изменения внешности человека пока решает пластическая хирургия. Глядя на Микки Рурка, попытки не всегда можно назвать удачными, да и о всевозможных осложнениях мы наслышаны. Но, к счастью, наука предлагает все новые способы преображения.

Калифорнийские врачи из компании Stroma Medical тоже совершили научное открытие: научились превращать карие глаза в голубые . Несколько десятков операций уже были проведены в Мексике и Коста-Рике (в США разрешение на такие манипуляции пока не получено из-за недостатка данных о безопасности).

Суть метода в том, чтобы удалить тонкий слой, содержащий пигмент меланин, с помощью лазера (процедура занимает 20 секунд). Через несколько недель отмершие частицы самостоятельно выводятся организмом, и из зеркала на пациента смотрит натуральная Синеглазка. (Фокус в том, что при рождении у всех людей голубые очи, но у 83% они заслоняются слоем, в разной степени наполненным меланином.) Не исключено, что после разрушения пигментного слоя врачи научатся наполнять глаза новыми цветами. Тогда-то люди с оранжевыми, золотыми или фиолетовыми очами и наводнят улицы, радуя поэтов-песенников.

Изменение цвета кожи

А на другом конце мира, в Швейцарии, ученые наконец разгадали секрет выкрутасов хамелеона. Менять цвет ему позволяет сеть из нанокристаллов, располагающихся в специальных клетках кожи – иридофорах. Ничего сверхъестественного в этих кристаллах нет: они состоят из гуанина, составного компонента ДНК. В расслабленном состоянии наногерои образуют плотную сеть, отражающую зеленый и синий цвета. В возбужденном – сеть натягивается, расстояние между кристаллами увеличивается, и кожа начинает отражать красный, желтый и другие цвета.

В общем, как только генная инженерия позволит создавать клетки, подобные иридофорам, мы проснемся в обществе, где настроение можно будет транслировать не только мимикой, но и цветом руки . А там недалеко и до сознательного управления внешностью, как у Мистик из фильма «Люди Икс».

Органы, напечатанные на 3D-принтере

Важный прорыв в починке человеческих тел совершен и у нас на родине. Ученые из лаборатории «3Д Биопринтинг Солюшенс» создали уникальный 3D-принтер, печатающий ткани тела. Недавно впервые была получена ткань мышиной щитовидной железы, которую в ближайшие месяцы собираются пересадить живому грызуну. Структурные компоненты организма, например трахею, штамповали и раньше. Цель российских ученых – получить полностью функционирующую ткань. Это могут быть железы внутренней секреции, почки или печень. Печать тканей с известными параметрами позволит избежать несовместимости – одной из главных проблем трансплантологии.

Тараканы на службе МЧС

Еще одна удивительная разработка может спасти жизни людей, застрявших под завалами после катастроф или попавших в труднодоступные места – шахты или пещеры. Используя специальные акустические стимулы, передаваемые с помощью «рюкзачка» на спинке таракана, умы сделали научное открытие: научились манипулировать насекомым как радиоуправляемой машинкой . Толк от использования живого существа заключается в его инстинкте самосохранения и умении ориентироваться, благодаря которому усач преодолевает препятствия и избегает опасности. Повесив на таракана маленькую камеру, можно успешно «осматривать» труднодоступные места и принимать решения о способе эвакуации.

Телепатия и телекинез для всех

Очередная невероятная новость: телепатия и телекинез, всю дорогу считавшиеся шарлатанством, вообще-то реальны. За последние годы ученые смогли наладить телепатическую связь между двумя животными, животным и человеком, и, наконец, недавно впервые на расстояние была передана мысль – от одного гражданина другому. Чудо случилось благодаря 3 технологиям.

  1. Электроэнцефалография (ЭЭГ) позволяет снимать электрическую активность мозга в виде волн и служит «устройством вывода». После некоторой тренировки определенные волны можно связать с конкретными образами в голове.
  2. Транскраниальная магнитная стимуляция (ТМС) позволяет с помощью магнитного поля создавать в мозге электрический ток, который дает возможность «заносить» эти образы в серое вещество. ТМС служит «устройством ввода».
  3. И, наконец, интернет позволяет передавать эти образы в виде цифровых сигналов от одного человека другому. Пока что транслируемые образы и слова весьма примитивны, но всякая сложная технология должна с чего-то начинать.

Телекинез стал возможен благодаря той же электрической активности серого вещества. Пока эта технология требует хирургического вмешательства: сигналы снимаются с мозга силами крошечной сетки электродов и передаются в цифровом виде на манипулятор. Недавно 53-летняя парализованная женщина Джен Шоерман с помощью этого научного открытия специалистов из Университета Питтсбурга успешно управляла самолетом в компьютерном симуляторе истребителя F-35. Например, автор статьи с трудом справляется с авиасимуляторами, даже имея две функционирующие руки.

В будущем технологии передачи мыслей и движений на расстоянии не только улучшат качество жизни парализованных, но и наверняка войдут в быт, позволяя разогреть ужин силой мысли.

Безопасное вождение

Лучшие умы работают над автомобилем, который не требует активного участия водителя. Машины Tesla, например, уже умеют самостоятельно парковаться, по таймеру выезжать из гаража и подкатывать к хозяину, перестраиваться в потоке и подчиняться дорожным знакам, ограничивающим скорость движения. И близок день, когда компьютерное управление позволит наконец закинуть ноги на приборную панель и спокойно сделать педикюр по дороге на работу.

Параллельно словацкие инженеры из компании AeroMobil действительно создали авто родом из фантастических фильмов. Двухместная машина ездит по шоссе, но стоит ей вырулить в поле, она в буквальном смысле расправляет крылья и взлетает , чтобы срезать путь. Или перемахнуть через пункт оплаты на платных трассах. (Увидеть это своими глазами можно на YouTube.) Конечно, штучные летающие агрегаты производились и раньше, но на сей раз инженеры обещают выпустить на рынок машину с крыльями уже через 2 года.

Научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь она оказалась правой. Наука и медицина аж с 1987 не производили действительно новых видов антибиотиков. Однако болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы под воздействием этого лекарства не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин к настоящему моменту доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки фактически из ничего.

Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать почти как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако ученые в этом случае были ограничены в своих возможностях.

Относительно недавно ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела , которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и тем самым подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда по-прежнему проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что в конечном итоге удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.