Построение доверительного интервала для математического ожидания генеральной совокупности. Доверительные интервалы для частот и долей

Доверительные интервалы (англ. Confidence Intervals ) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.

Нормальное распределение

Когда известна вариация (σ 2) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.

Формула

Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула

L = X - Z α/2 σ
√n

Пример

Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Z α/2 =1,96. В этом случае нижняя и верхняя граница доверительного интервала составят

L = 15 - 1,96 8 = 11,864
√25
L = 15 + 1,96 8 = 18,136
√25

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.

Методы сужения доверительного интервала

Допустим, что диапазон является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.

  1. Снизить уровень статистической значимости α.
  2. Увеличить объем выборки.

Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Z α/2 =1,64. В этом случае нижняя и верхняя граница интервала составят

L = 15 - 1,64 8 = 12,376
√25
L = 15 + 1,64 8 = 17,624
√25

А сам доверительный интервал может быть записан в виде

В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон .

Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов

L = 15 - 1,96 8 = 13,693
√144
L = 15 + 1,96 8 = 16,307
√144

Сам доверительный интервал станет иметь следующий вид

Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.

Построение доверительного интервала при распределении отличном от нормального

В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.

Формула

Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы

L = X - t α σ
√n

Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.

Пример

Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.

В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят

L = 50 - 2,064 28 = 38,442
√25
L = 50 + 2,064 28 = 61,558
√25

А сам интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне .

Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.

Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.

L = 50 - 1,711 28 = 40,418
√25
L = 50 + 1,711 28 = 59,582
√25

В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне .

Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.

L = 50 - 1,998 28 = 43,007
√64
L = 50 + 1,998 28 = 56,993
√64

Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне .

Выборки большого объема

К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.

Подведем итоги

Доверительный интервал

Доверительный интервал - термин, используемый в математической статистике при интервальной (в отличие от точечной) оценке статистических параметров, что предпочтительнее при небольшом объёме выборки. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.

Метод доверительных интервалов разработал американский статистик Ежи Нейман , исходя из идей английского статистика Рональда Фишера .

Определение

Доверительным интервалом параметра θ распределения случайной величины X с уровнем доверия 100p% , порождённым выборкой (x 1 ,…,x n), называется интервал с границами (x 1 ,…,x n) и (x 1 ,…,x n), которые являются реализациями случайных величин L (X 1 ,…,X n) и U (X 1 ,…,X n), таких, что

.

Граничные точки доверительного интервала и называются доверительными пределами .

Интерпретация доверительного интервала, основанная на интуиции, будет следующей: если p велико (скажем, 0,95 или 0,99), то доверительный интервал почти наверняка содержит истинное значение θ .

Еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра θ , совместимых с опытными данными и не противоречащих им.

Примеры

  • Доверительный интервал для математического ожидания нормальной выборки ;
  • Доверительный интервал для дисперсии нормальной выборки .

Байесовский доверительный интервал

В байесовской статистике существует схожее, но отличающееся в некоторых ключевых деталях определение доверительного интервала. Здесь оцениваемый параметр сам считается случайной величиной с некоторым заданным априорным распределением (в простейшем случае - равномерным), а выборка фиксирована (в классической статистике всё в точности наоборот). Байесовский -доверительным интервал - это интервал , покрывающий значение параметра с апостериорной вероятностью :

.

Как правило, классический и байесовский доверительные интервалы различаются. В англоязычной литературе байесовский доверительный интервал принято называть термином credible interval , а классический - confidence interval .

Примечания

Источники

Wikimedia Foundation . 2010 .

  • Детки (фильм)
  • Колонист

Смотреть что такое "Доверительный интервал" в других словарях:

    Доверительный интервал - интервал, вычисленный по выборочным данным, который с заданной вероятностью (доверительной) накрывает неизвестное истинное значение оцениваемого параметра распределения. Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов … Словарь-справочник терминов нормативно-технической документации

    доверительный интервал - для скалярного параметра генеральной совокупности – это отрезок, с большой вероятностью содержащий этот параметр. Эта фраза без дальнейших уточнений бессмысленна. Поскольку границы доверительного интервала оцениваются по выборке, естественна его… … Словарь социологической статистики

    ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ - метод оценивания параметров, отличающийся от точечного оценивания. Пусть задана выборка x1, . . ., хn из распределения с плотностью вероятности f(x, α), и а*=а*(x1, . . ., хn) оценка α, g(a*, α) плотность вероятности оценки. Ищем… … Геологическая энциклопедия

    ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ - (confidence interval) Интервал, в котором достоверность значения параметра по населению, полученного на основе выборочного обследования, имеет определенную степень вероятности, например 95%, что обусловлено самой выборкой (sample). Ширина… … Экономический словарь

    доверительный интервал - – интервал, в котором находится истинное значение определяемой величины с заданной доверительной вероятностью. Общая химия: учебник / А. В. Жолнин … Химические термины

    Доверительный интервал ДИ - Доверительный интервал, ДИ * давяральны інтэрвал, ДІ * confidence interval интервал значения признака, рассчитанный для к. л. параметра распределения (напр., среднего значения признака) по выборке и с определенной вероятностью (напр., 95% для 95% … Генетика. Энциклопедический словарь

    ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ - понятие, возникающее при оценке параметра статистич. распределения интервалом значений. Д. и. для параметра q, соответствующий данному коэф. доверия Р, равен такому интервалу (q1, q2), что при любом распределении вероятности неравенства… … Физическая энциклопедия

    доверительный интервал - — Тематики электросвязь, основные понятия EN confidence interval … Справочник технического переводчика

    доверительный интервал - pasikliovimo intervalas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydžio verčių intervalas, kuriame su pasirinktąja tikimybe yra matavimo rezultato vertė. atitikmenys: angl. confidence interval vok. Vertrauensbereich, m rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    доверительный интервал - pasikliovimo intervalas statusas T sritis chemija apibrėžtis Dydžio verčių intervalas, kuriame su pasirinktąja tikimybe yra matavimo rezultatų vertė. atitikmenys: angl. confidence interval rus. доверительная область; доверительный интервал … Chemijos terminų aiškinamasis žodynas

Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.

Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.

В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ , а во втором — ДОВЕРИТ.СТЮДЕНТ .

Способ 1: функция ДОВЕРИТ.НОРМ

Оператор ДОВЕРИТ.НОРМ , относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ . Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.

Его синтаксис выглядит следующим образом:

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

«Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:

(1-«Альфа»)*100

«Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.

«Размер» — аргумент, определяющий величину выборки.

Все аргументы данного оператора являются обязательными.

Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:

ДОВЕРИТ(альфа;стандартное_откл;размер)

Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость» . В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.

Граница доверительного интервала определяется при помощи формулы следующего вида:

X+(-)ДОВЕРИТ.НОРМ

Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.

Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.

  1. Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию» .
  2. Появляется Мастер функций . Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ» . После этого клацаем по кнопке «OK» .
  3. Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
    Устанавливаем курсор в первое поле – «Альфа» . Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:

    (1-уровень доверия)/100

    То есть, подставив значение, получаем:

    Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03 . Вводим данное значение в поле.

    Как известно, по условию стандартное отклонение равно 8 . Поэтому в поле «Стандартное отклонение» просто записываем это число.

    В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12 . Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ . Итак, устанавливаем курсор в поле «Размер» , а затем кликаем по треугольнику, который размещен слева от строки формул.

    Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…» .

  4. Появляется уже знакомый нам Мастер функций . Опять перемещаемся в группу «Статистические» . Выделяем там наименование «СЧЁТ» . Клацаем по кнопке «OK» .
  5. Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:

    СЧЁТ(значение1;значение2;…)

    Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.

    Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK» .

  6. После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:

    ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    Общий результат вычислений составил 5,011609 .

  7. Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ . Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ .

    Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:

    СРЗНАЧ(число1;число2;…)

    Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.

    Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию» .

  8. Открывается Мастер функций . Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ» . Как всегда, клацаем по кнопке «OK» .
  9. Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK» .
  10. После этого СРЗНАЧ выводит результат расчета в элемент листа.
  11. Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=» и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ и ДОВЕРИТ.НОРМ . Для того, чтобы выполнить расчет, жмем на клавишу Enter . В нашем случае получилась следующая формула:

    Результат вычисления: 6,953276

  12. Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ . Получается формула для нашего примера следующего типа:

    Результат вычисления: -3,06994

  13. Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

  14. Аналогичное вычисление левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ . Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:

ДОВЕРИТ.СТЬЮДЕНТ(альфа;стандартное_откл;размер)

Как видим, наименования операторов и в этом случае остались неизменными.

Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.

  1. Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию» .
  2. В открывшемся Мастере функций переходим в категорию «Статистические» . Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ» . Клацаем по кнопке «OK» .
  3. Производится запуск окна аргументов указанного оператора.

    В поле «Альфа» , учитывая, что уровень доверия составляет 97%, записываем число 0,03 . Второй раз на принципах расчета данного параметра останавливаться не будем.

    После этого устанавливаем курсор в поле «Стандартное отклонение» . На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В . Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…» .

  4. Запускается Мастер функций . Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В» . Затем клацаем по кнопке «OK» .
  5. Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В является определение стандартного отклонения при выборке. Его синтаксис выглядит так:

    СТАНДОТКЛОН.В(число1;число2;…)

    Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.

    Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK» , так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ , чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.

  6. Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер» . Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ» . Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
  7. Попав в окно аргументов СЧЁТ , ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK» .
  8. После этого программа производит расчет и выводит значение доверительного интервала.
  9. Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
  10. Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ , получаем правую границу доверительного интервала.
  11. Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ , имеем левую границу доверительного интервала.
  12. Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

  13. Соответственно, формула расчета левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.

Пусть у нас имеется большое количество предметов, с нормальным распределением некоторых характеристик (например, полный склад однотипных овощей, размер и вес которых варьируется). Вы хотите знать средние характеристики всей партии товара, но у Вас нет ни времени, ни желания измерять и взвешивать каждый овощ. Вы понимаете, что в этом нет необходимости. Но сколько штук надо было бы взять на выборочную проверку?

Прежде, чем дать несколько полезных для этой ситуации формул напомним некоторые обозначения.

Во-первых, если бы мы все-таки промерили весь склад овощей (эт о множество элементов называется генеральной совокупностью), то мы узнали бы со всей доступной нам точностью среднее значение веса всей партии. Назовем это среднее значение Х ср.г ен . - генеральным средним. Мы уже знаем, что определяется полностью, если известно его среднее значение и отклонение s . Правда, пока мы ни Х ср.ген., ни s генеральной совокупности не знаем. Мы можем только взять некоторую выборку, замерить нужные нам значения и посчитать для этой выборки как среднее значение Х ср.в ыб., так и среднее квадратическое отклонение S выб.

Известно, что если наша выборочная проверка содержит большое количество элементов (обычно n больше 30), и они взяты действительно случайным образом , то s генеральной совокупности почти не будет отличаться от S выб ..

Кроме того, для случая нормального распределения мы можем пользоваться следующими формулами:

С вероятностью 95%


С вероятностью 99%



В общем виде c вероятностью Р (t)


Связь значения t со значением вероятности Р (t), с которой мы хотим знать доверительный интервал, можно взять из следующей таблицы:


Таким образом, мы определили, в каком диапазоне находится среднее значение для генеральной совокупности (с данной вероятностью).

Если у нас нет достаточно большой выборки, мы не можем утверждать, что генеральная совокупность имеет s = S выб. Кроме того, в этом случае проблематична близость выборки к нормальному распределению. В этом случае также пользуются S выб вместо s в формуле:




но значение t для фиксированной вероятности Р (t) будет зависеть от количества элементов в выборке n. Чем больше n, тем ближе будет полученный доверительный интервал к значению, даваемому формулой (1). Значения t в этом случае берутся из другой таблицы (t-критерий Стьюдента), которую мы приводим ниже:

Значения t-критерия Стьюдента для вероятности 0,95 и 0,99


Пример 3. Из работников фирмы случайным образом отобрано 30 человек. По выборке оказалось, что средняя зарплата (в месяц) составляет 30 тыс. рублей при среднем квадратическом отклонении 5 тыс. рублей. С вероятностью 0,99 определить среднюю зарплату в фирме.

Решение: По условию имеем n = 30, Х ср. =30000, S=5000, Р = 0,99. Для нахождения доверительного интервала воспользуемся формулой, соответствующей критерию Стьюдента. По таблице для n = 30 и Р = 0,99 находим t=2,756, следовательно,


т.е. искомый доверительный интервал 27484 < Х ср.ген < 32516.

Итак, вероятностью 0,99 можно утверждать, что интервал (27484; 32516) содержит внутри себя среднюю зарплату в фирме.

Мы надеемся, что Вы будете пользоваться этим методом, при этом не обязательно, чтобы при Вас каждый раз была таблица. Подсчеты можно проводить в Excel автоматически. Находясь в файле Excel, нажмите в верхнем меню кнопку fx. Затем, выберите среди функций тип "статистические", и из предложенного перечня в окошке - СТЬЮДРАСПОБР. Затем, по подсказке, поставив курсор в поле "вероятность" наберите значение обратной вероятности (т.е. в нашем случае вместо вероятности 0,95 надо набирать вероятность 0,05). Видимо, электронная таблица составлена так, что результат отвечает на вопрос, с какой вероятностью мы можем ошибиться. Аналогично в поле "степень свободы" введите значение (n-1) для своей выборки.

Оценка доверительных интервалов

Цели обучения

Статистика рассматривает следующие две основные задачи :

    У нас есть некоторая оценка, построенная на выборочных данных, и мы хотим сделать некоторое вероятностное утверждение относительно того, где находится истинное значение оцениваемого параметра.

    У нас есть конкретная гипотеза, которую необходимо проверить на основе выборочных данных.

В данной теме мы рассматриваем первую задачу. Введем также определение доверительного интервала.

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Изучив материал данной темы, Вы:

    узнаете, что такое доверительный интервал оценки;

    научитесь классифицировать статистические задачи;

    освоите технику построения доверительных интервалов, как по статистическим формулам, так и с помощью программного инструментария;

    научитесь определять необходимые размеры выборок для достижения определенных параметров точности статистических оценок.

Распределения выборочных характеристик

Т-распределение

Как обсуждали выше распределение случайной величины близко к стандартизованному нормальному распределению с параметрами 0 и 1. Поскольку нам не известна величина σ, мы заменяем ее на некоторую оценку s . Величина уже имеет другое распределение, а именно или Распределение Стьюдента , которое определяется параметром n -1 (число степеней свободы). Это распределение близко к нормальному распределению (чем больше n , тем распределения ближе).

На рис. 95
представлено распределение Стьюдента с 30 степенями свободы. Как видно, оно весьма близко к нормальному распределению.

Аналогично функциям для работы с нормальным распределением НОРМРАСП и НОРМОБР имеются функции для работы с t-распределением - СТЬЮДРАСП (TDIST) и СТЬЮДРАСПОБР (TINV) . Пример использования этих функций можно посмотреть в файле СТЬЮДРАСП.XLS (шаблон и решение ) и на рис. 96
.

Распределения других характеристик

Как мы уже знаем, для определения точности оценивания математического ожидания нам необходимо t-распределение. Для оценивания других параметров, например, дисперсии, требуются другие распределения. Два из них - это F-распределение и x 2 -распределение .

Доверительный интервал для среднего значения

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Построение доверительного интервала для среднего значения происходит следующим образом :

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать 40 посетителей из тех, кто уже попробовал его и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. Как это осуществить? (см. файл СЭНДВИЧ1.XLS (шаблон и решение ).

Решение

Для решения данной задачи можно воспользоваться . Результаты представлены на рис. 97
.

Доверительный интервал для суммарного значения

Иногда по выборочным данным требуется оценить не математическое ожидание, а общую сумму значений. Например, в ситуации с аудитором интерес может представлять оценка не средней величины счета, а суммы всех счетов.

Пусть N - общее количество элементов, n - размер выборки, T 3 - сумма значений в выборке, T" - оценка для суммы по всей совокупности, тогда , а доверительный интервал вычисляется по формуле , где s - оценка стандартного отклонения для выборки, - оценка среднего для выборки.

Пример

Допустим, некоторая налоговая служба хочет оценить размер суммарных налоговых возвратов для 10 000 налогоплательщиков. Налогоплательщик либо получает возврат, либо доплачивает налоги. Найдите 95%-й доверительный интервал для суммы возврата при условии, что размер выборки составляет 500 человек (см. файл СУММА ВОЗВРАТОВ.XLS (шаблон и решение ).

Решение

В StatPro нет специальной процедуры для этого случая, однако можно заметить, что границы можно получить из границ для среднего исходя из вышеприведенных формул (рис. 98
).

Доверительный интервал для пропорции

Пусть p - математическое ожидание доли клиентов, а р в - оценка этой доли, полученная по выборке размера n. Можно показать, что для достаточно больших распределение оценки будет близко к нормальному с математическим ожиданием p и стандартным отклонением . Стандартная ошибка оценки в данном случае выражается как , а доверительный интервал как .

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом выбрал 40 посетителей из тех, кто уже попробовал его и предложил им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемую долю клиентов, которые оценивают новый продукт не менее чем в 6 баллов (он ожидает, что именно эти клиенты и будут потребителями нового продукта).

Решение

Первоначально создаем новый столбец по признаку 1, если оценка клиента была больше 6 баллов и 0 иначе (см. файл СЭНДВИЧ2.XLS (шаблон и решение ).

Способ 1

Подсчитывая количество 1, оцениваем долю, а далее используем формулы.

Значение z кр берется из специальных таблиц нормального распределения (например, 1,96 для 95%-го доверительного интервала).

Используя данный подход и конкретные данные для построения 95%-го интервала, получим следующие результаты (рис. 99
). Критическое значение параметра z кр равно 1,96. Стандартная ошибка оценки - 0,077. Нижняя граница доверительного интервала - 0,475. Верхняя граница доверительного интервала - 0,775. Таким образом, менеджер вправе полагать с 95%-й долей уверенности, что процент клиентов, оценивших новый продукт на 6 баллов и выше, будет между 47,5 и 77,5.

Способ 2

Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно заметить, что доля в данном случае совпадает со средним значением столбца Тип . Далее применим StatPro/Statistical Inference/One-Sample Analysis для построения доверительного интервала среднего значения (оценки математического ожидания) для столбца Тип . Полученные в этом случае результат, будут весьма близок к результату 1-го способа (рис. 99).

Доверительный интервал для стандартного отклонения

В качестве оценки стандартного отклонения используется s (формула приведена в разделе 1). Функцией плотности распределения оценки s является функция хи-квадрат , которая, как и t-распределение, имеет n-1 степень свободы. Имеются специальные функции для работы с этим распределением ХИ2РАСП (CHIDIST) и ХИ2ОБР (CHIINV) .

Доверительный интервал в этом случае уже будет не симметричным. Условная схема границ представлена на рис. 100 .

Пример

Станок должен производить детали диаметром 10 см. Однако в силу различных обстоятельств происходят ошибки. Контролера по качеству волнуют два обстоятельства: во-первых, среднее значение должно равняться 10 см; во-вторых, даже в этом случае, если отклонения будут велики, то многие детали будут забракованы. Ежедневно он делает выборку из 50 деталей (см. файл КОНТРОЛЬ КАЧЕСТВА.XLS (шаблон и решение ). Какие выводы может дать такая выборка?

Решение

Построим 95%-й доверительные интервалы для среднего и для стандартного отклонения с помощью StatPro/Statistical Inference/ One-Sample Analysis (рис. 101
).

Далее, используя предположение о нормальном распределении диаметров, рассчитаем долю бракованных изделий, задавшись предельным отклонением 0,065. Используя возможности таблицы подстановки (случай двух параметров), построим зависимость доли брака от среднего значения и стандартного отклонения (рис. 102
).

Доверительный интервал для разности двух средних значений

Это одно из наиболее важных применений статистических методов. Примеры ситуаций.

    Менеджер магазина одежды хотел бы знать, на сколько больше или меньше тратит в магазине средняя женщина-покупатель, чем мужчина.

    Две авиакомпании летают аналогичными маршрутами. Организация-потребитель хотела бы сравнить разницу между среднеожидаемыми временами задержек рейсов по обеим авиакомпаниям.

    Компания рассылает купоны на отдельные виды товаров в одном городе и не рассылает в другом. Менеджеры хотят сравнить средние объемы покупок этих товаров в ближайшие два месяца.

    Автомобильный дилер часто имеет дело на презентациях с замужними парами. Чтобы понять их персональную реакцию на презентацию, пары часто опрашивают отдельно. Менеджер хочет оценить разницу в рейтингах указываемых мужчинами и женщинами.

Случай независимых выборок

Разность средних значений будет иметь t-распределение с n 1 + n 2 - 2 степенями свободы. Доверительный интервал для μ 1 - μ 2 выражается соотношением:

Данная задача допускает решение не только по вышеприведенным формулам, но и стандартными средствами StatPro . Для этого достаточно применить

Доверительный интервал для разности между пропорциями

Пусть - математическое ожидание долей. Пусть - их выборочные оценки, построенные по выборкам размера n 1 и n 2 соответственно. Тогда является оценкой для разности . Следовательно, доверительный интервал этой разности выражается как:

Здесь z кр является значением, полученным из нормального распределения по специальным таблицам (например, 1,96 для 95%-й доверительного интервала).

Стандартная ошибка оценки выражается в данном случае соотношением:

.

Пример

Магазин, готовясь к большой распродаже, предпринял следующие маркетинговые исследования. Были выбраны 300 лучших покупателей, которые в свою очередь были случайным образом поделены на две группы по 150 членов в каждой. Всем из отобранных покупателей были разосланы приглашения для участия в распродаже, но только для членов первой группы был приложен купон, дающий право на скидку 5%. В ходе распродажи покупки всех 300 отобранных покупателей фиксировались. Каким образом менеджер может интерпретировать полученные результаты и сделать заключение об эффективности предоставления купонов? (см. файл КУПОНЫ.XLS (шаблон и решение )).

Решение

Для нашего конкретного случая из 150 покупателей, получивших купон на скидку, 55 сделали покупку на распродаже, а среди 150, не получивших купон, покупку сделали только 35 (рис. 103
). Тогда значения выборочных пропорций соответственно 0,3667 и 0,2333. А выборочная разность между ними равна соответственно 0,1333. Полагая доверительный интервал 95%-м, находим по таблице нормального распределения z кр = 1,96. Вычисление стандартной ошибки выборочной разности равно 0,0524. Окончательно получаем, что нижняя граница 95%-го доверительного интервала равна 0,0307, а верхняя граница 0,2359 соответственно. Полученные результаты можно интерпретировать таким образом, что на каждых 100 покупателей, получивших купон со скидкой, можно ожидать от 3 до 23 новых покупателей. Однако надо иметь в виду, что этот вывод сам по себе еще не означает эффективности применения купонов (поскольку, предоставляя скидку, мы теряем в прибыли!). Продемонстрируем это на конкретных данных. Предположим, что средний размер покупки равен 400 руб., из которых 50 руб. есть прибыль магазина. Тогда ожидаемая прибыль на 100 покупателях, не получивших купон, равна:

50 0,2333 100 = 1166,50 руб.

Аналогичные вычисления для 100 покупателей получивших купон, дают:

30 0,3667 100 = 1100,10 руб.

Уменьшение средней прибыли до 30 объясняется тем, что, используя скидку, покупатели, получившие купон, в среднем будут делать покупку на 380 руб.

Таким образом, итоговый вывод говорит о неэффективности использования таких купонов в данной конкретной ситуации.

Замечание. Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно свести данную задачу к задаче оценки разности двух средних способом, а далее применить StatPro/Statistical Inference/Two-Sample Analysis для построения доверительного интервала разности двух средних значений.

Управление длиной доверительного интервала

Длина доверительного интервала зависит от следующих условий :

    непосредственно данных (стандартное отклонение);

    уровня значимости;

    размера выборки.

Размер выборки для оценки среднего значения

Сначала рассмотрим задачу в общем случае. Обозначим данное нам значение половины длины доверительного интервала за В (рис. 104
). Нам известно, что доверительный интервал для среднего значения некоторой случайной величины X выражается как , где . Полагая:

и выражая n , получим .

К сожалению, точное значение дисперсии случайной величины X нам не известно. Кроме этого, нам неизвестно и значение t кр , так как оно зависит от n через количество степеней свободы. В данной ситуации мы можем поступить следующим образом. Вместо дисперсии s используем какую-либо оценку дисперсии, по каким-либо имеющимся реализациям исследуемой случайной величины. Вместо значения t кр используем значение z кр для нормального распределения. Это вполне допустимо, поскольку функции плотности распределений для нормального и t-распределения очень близки (за исключением случая малых n ). Таким образом, искомая формула принимает вид:

.

Поскольку формула дает, вообще говоря, нецелочисленные результат, в качестве искомого размера выборки берется округление с избытком результата.

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать некоторое количество посетителей из тех, кто уже попробовал его, и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. При этом он хочет, чтобы половина ширины доверительного интервала не превышала 0,3. Какое количество посетителей ему необходимо опросить?

выглядит следующим образом:

Здесь р оц - оценка доли p , а В есть заданная половина длины доверительного интервала. Завышенное значение для n можно получить, используя значение р оц = 0,5. В этом случае длина доверительного интервала не будет превосходить заданного значения В при любом истинном значении p .

Пример

Пусть менеджер из предыдущего примера планирует оценить долю клиентов, отдавших предпочтение новому виду продукции. Он хочет построить 90%-й доверительный интервал, половина длины которого не превосходила бы 0,05. Сколько клиентов должно войти в случайную выборку?

Решение

В нашем случае значение z кр = 1,645. Поэтому искомое количество вычисляется как .

Если бы менеджер имел основания полагать, что искомое значение p составляет, например, примерно 0,3, то, подставляя это значение в вышеприведенную формулу, мы получили бы меньшее значение величины случайной выборки, а именно 228.

Формула для определения размеров случайной выборки в случае разности между двумя средними значениями записывается как:

.

Пример

Некоторая компьютерная компания имеет сервисный центр по обслуживанию клиентов. В последнее время увеличилось количество жалоб клиентов на плохое качество обслуживания. В сервисном центре в основном работают сотрудники двух типов: не имеющие большого опыта, но закончившие специальные подготовительные курсы, и имеющие большой практический опыт, но не закончившие специальных курсов. Компания хочет проанализировать нарекания клиентов за последние полгода и сравнить их средние количества, приходящиеся на каждую из двух групп сотрудников. Предполагается, что количества в выборках по обеим группам будут одинаковые. Какое количество сотрудников необходимо включить в выборку, чтобы получить 95%-й интервал с половиной длины не более 2?

Решение

Здесь σ оц есть оценка стандартного отклонения обеих случайных переменных в предположении, что они близки. Таким образом, в нашей задаче нам необходимо каким-то образом получить эту оценку. Это можно сделать, например, следующим образом. Просмотрев данные по нареканиям клиентов за последние полгода, менеджер может заметить, что на каждого сотрудника в основном приходится от 6 до 36 нареканий. Зная, что для нормального распределения практически все значения удалены от среднего значения не более чем на три стандартных отклонения, он может с определенным основанием полагать, что:

, откуда σ оц = 5.

Подставляя это значение в формулу, получаем .

Формула для определения размера случайной выборки в случае оценки разности между долями имеет вид:

Пример

Некоторая компания имеет две фабрики по производству аналогичной продукции. Менеджер компании хочет сравнить доли бракованной продукции на обеих фабриках. По имеющейся информации процент брака на обеих фабриках составляет от 3 до 5%. Предполагается построить 99%-й доверительный интервал с половиной длины не более 0,005 (или 0,5%). Какое количество изделий необходимо отобрать с каждой фабрики?

Решение

Здесь р 1оц и р 2оц являются оценками двух неизвестных долей брака на 1-й и 2-й фабрике. Если положить р 1оц = р 2оц = 0,5, то мы получим завышенное значение для n . Но поскольку в нашем случае мы имеем некоторую априорную информацию об этих долях, то мы берем верхнюю оценку этих долей, а именно 0,05. Получаем

Когда делается оценка некоторых параметров совокупности по выборочным данным, полезно дать не только точечную оценку параметра, но и указать доверительный интервал, который показывает, где может находиться точное значение оцениваемого параметра.

В данной главе мы также познакомились с количественными соотношениями, позволяющими строить такие интервалы для различных параметров; узнали способы управления длиной доверительного интервала.

Отметим также, что задачу оценки размеров выборки (задача планирования эксперимента) можно решить, используя стандартные средства StatPro , а именно StatPro/Statistical Inference/Sample Size Selection .