Средняя скорость ракеты в космосе км ч. С какой скоростью летит ракета в космос

11.06.2010 00:10

Американский космический корабль Dawn недавно установил новый рекорд набора скорости — 25,5 тысячи км/час, опередив своего главного конкурента — зонд Deep Space 1. Такое достижение стало возможным благодаря установленному на аппарате сверхмощному ионному двигателю. Однако, по мнению специалистов NASA, это еще далеко не предел его возможностей.

Скорость американского космического аппарата Dawn достигла 5 июня рекордной величины — 25,5 тысячи км/час. Однако, по мнению ученых, в ближайшее время скорость корабля доберется и до отметки в 100 тысяч км/час.

Таким образом, благодаря уникальному двигателю, Dawn обошел своего предшественника — зонд Deep Space 1, экспериментальный автоматический космический аппарат, запущенный 24 октября 1998 года ракетой-носителем. Правда, Deep Space 1 пока сохраняет за собой звание станции, двигатели которой работали дольше всего. Но опередить "конкурента" в этой категории Dawn может уже в августе.

Основной задачей космического корабля, запущенного три года назад, является изучение астероида 4 Веста, к которому аппарат приблизится в 2011 году, и карликовой планеты Церера. Ученые надеются получить максимально точные данные о форме, размерах, массе, минеральном и элементном составе этих объектов, расположенных между орбитами Юпитера и Марса. Общий путь, который предстоит преодолеть аппарату Dawn, составляет 4 миллиарда 800 миллионов километров.

Так как в космическом пространстве нет воздуха, разогнавшись, корабль продолжает двигаться с набранной скоростью. На Земле это невозможно из-за замедления при трении. Использование в условиях безвоздушного пространства ионных двигателей позволило ученым сделать процесс постепенного приращения скорости космического аппарата Dawn максимально эффективным.

Принцип работы инновационного двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей. Таким образом, в двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа (по сравнению с химической реакцией), но требует больших затрат энергии.

Три двигателя аппарата Dawn работают не постоянно, а включаются ненадолго в определенные моменты полета. К настоящему моменту они проработали в общей сложности 620 дней и израсходовали свыше 165 килограммов ксенона. Несложные расчеты показывают, что скорость зонда увеличивалась примерно на 100 км/ч каждые четыре дня. К концу восьмилетней миссии Dawn (хотя специалисты не исключают ее продления) суммарное время работы двигателей составит 2000 дней — почти 5,5 года. Такие показатели сулят, что скорость космического корабля достигнет 38,6 тысячи км/час.

Это может показаться небольшой величиной на фоне хотя бы первой космической скорости, с которой запускаются искусственные спутники Земли, но для межпланетного аппарата без каких-либо внешних ускорителей, не совершающего специальные маневры в гравитационном поле планет, такой результат и в самом деле примечателен.

В борьбе за преодоление «конденсационного порога» ученым-аэродинамикам пришлось отказаться от применения расширяющегося сопла. Были созданы сверхзвуковые аэродинамические трубы принципиально нового типа. На входе в такую трубу ставится баллон высокого давления, который отделяется от нее тонкой пластинкой - диафрагмой. На выходе труба соединяется с вакуумной камерой, в результате чего в трубе создается высокое разрежение.

Если прорвать диафрагму, например резким увеличением давления в баллоне, то поток газа устремится по трубе в разреженное пространство вакуумной камеры, предшествуемый мощной ударной волной. Поэтому установки эти получили название ударных аэродинамических труб.

Как и для трубы баллонного типа, время действия ударных аэродинамических труб очень невелико и составляет всего несколько тысячных долей секунды. Для проведения необходимых измерений за столь короткое время приходится использовать сложные быстродействующие электронные приборы.

Ударная волна перемещается в трубе с очень большой скоростью и без специального сопла. В созданных за рубежом аэродинамических трубах удалось получить скорости воздушного потока до 5200 метров в секунду при температуре самого потока в 20 000 градусов. При таких высоких температурах скорость звука в газе тоже увеличивается, и намного. Поэтому, несмотря на большую скорость воздушного потока, ее превышение над скоростью звука оказывается незначительным. Газ движется с большой абсолютной скоростью и с небольшой скоростью относительно звука.

Чтобы воспроизвести большие сверхзвуковые скорости полета, необходимо было или еще больше увеличить скорость воздушного потока, или же снизить скорость звука в нем, то есть уменьшить температуру воздуха. И тут аэродинамики снова вспомнили о расширяющемся сопле: ведь с его помощью можно сделать и то и другое одновременно - оно разгоняет поток газа и в то же время охлаждает его. Расширяющееся сверхзвуковое сопло в этом случае оказалось тем ружьем, из которого аэродинамики убили сразу двух зайцев. В ударных трубах с таким соплом удалось получить скорости воздушного потока, в 16 раз превышающие скорость звука.

СО СКОРОСТЬЮ СПУТНИКА

Резко увеличить давление в баллоне ударной трубы и тем самым прорвать диафрагму можно различными способами. Например, как это делают в США, где применяется мощный электрический разряд.

В трубе на входе ставится баллон высокого давления, отделенный от остальной части диафрагмой. За баллоном располагается расширяющееся сопло. Перед началом испытаний давление в баллоне увеличилось до 35-140 атмосфер, а в вакуумной камере, на выходе из трубы, понижалось до миллионной доли атмосферного давления. Затем в баллоне производился сверхмощный разряд электрической дуги силой тока в миллион ! Искусственная молния в аэродинамической трубе резко увеличивала давление и температуру газа в баллоне, диафрагма мгновенно испарялась и поток воздуха устремлялся в вакуумную камеру.

В течение одной десятой секунды можно было воспроизвести скорость полета около 52 000 километров в час, или 14,4 километра в секунду! Таким образом, в лабораториях удалось преодолеть и первую и вторую космические скорости.

С этого момента аэродинамические трубы стали надежным подспорьем не только для авиации, но и для ракетной техники. Они позволяют решить целый ряд вопросов современного и будущего космоплавания. С их помощью можно испытать модели ракет, искусственных спутников Земли и космические корабли, воспроизводя тот участок их полета, который они проходят в пределах планетной атмосферы.

Но достигнутые скорости должны находиться лишь в самом начале шкалы воображаемого космического спидометра. Их освоение - это только первый шаг на пути создания новой отрасли науки - космической аэродинамики, которая была вызвана к жизни потребностями бурно развивающейся ракетной техники. И уже имеются новые значительные успехи в деле дальнейшего освоения космических скоростей.

Поскольку при электрическом разряде воздух в некоторой степени ионизируется, то можно попытаться в той же ударной трубе использовать электромагнитные поля для дополнительного ускорения получающейся воздушной плазмы. Эта возможность была осуществлена практически в другой, сконструированной в США ударной гидромагнитной трубе небольшого диаметра, в которой скорость движения ударной волны достигла 44,7 километра в секунду! О такой скорости движения пока что могут только мечтать конструкторы космических аппаратов.

Несомненно, что дальнейшие успехи науки и техники откроют более широкие возможности перед аэродинамикой будущего. Уже сейчас в аэродинамических лабораториях начинают использоваться современные физические установки, например установки с высокоскоростными струями плазмы. Для воспроизведения полета фотонных ракет в межзвездной разреженной среде и для изучения прохождения космических кораблей сквозь скопления межзвездного газа придется использовать достижения техники ускорения ядерных частиц.

И, очевидно, еще задолго до того, как первые звездолеты покинут пределы , их миниатюрные копии уже не один раз испытают в аэродинамических трубах все тяготы далекого пути к звездам.

P. S. О чем еще думают британские ученные: впрочем космическая скорость бывает далеко не только в научных лабораториях. Так, скажем если вас интересует создание сайтов в Саратове — http://galsweb.ru/ , то здесь вам его создадут с поистине космической скоростью.

Эта статья представит читателю такую интереснейшую тему, как космическая ракета, ракета-носитель и весь тот полезный опыт, который это изобретение принесло человечеству. Также будет рассказано и о полезных грузах, доставляемых в космическое пространство. Освоение космоса началось не так давно. В СССР это была середина третьей пятилетки, когда окончилась Вторая мировая война. Космическая ракета разрабатывалась во многих странах, однако даже США обогнать нас на том этапе не удалось.

Первые

Первой в удачном запуске ушла из СССР космическая ракета-носитель с искусственным спутником на борту 4 октября 1957 года. Спутник ПС-1 удалось вывести на околоземную орбиту. Нужно отметить, что для этого понадобилось создать шесть поколений, и только седьмого поколения космические ракеты России смогли развить нужную для выхода в околоземное пространство скорость - восемь километров в секунду. Иначе невозможно преодолеть притяжение Земли.

Это стало возможным в процессе разработок баллистического оружия дальнего радиуса, где применялось форсирование двигателя. Не следует путать: космическая ракета и космический корабль - это разные вещи. Ракета - средство доставки, а корабль крепится на неё. Вместо него там может быть что угодно - космическая ракета может нести на себе и спутник, и оборудование, и ядерную боеголовку, что всегда служило и до сих пор служит сдерживанием для ядерных держав и стимулом к сохранению мира.

История

Первыми теоретически обосновали запуск космической ракеты русские учёные Мещерский и Циолковский, которые уже в 1897 году описали теорию её полёта. Значительно позже эту идею подхватили Оберт и фон Браун из Германии и Годдард из США. Именно в этих трёх странах началась работа над задачами реактивного движения, создания твёрдотопливных и жидкостных реактивных двигателей. Лучше всех эти вопросы решались в России, по крайней мере твёрдотопливные двигатели уже широко использовались во Второй мировой войне ("Катюши"). Жидкостные реактивные двигатели лучше получились в Германии, создавшей первую баллистическую ракету - "Фау-2".

После войны команда Вернера фон Брауна, прихватив чертежи и разработки, нашла приют в США, а СССР вынужден был довольствоваться небольшим количеством отдельных узлов ракеты без какой бы то ни было сопроводительной документации. Остальное придумали сами. Ракетная техника развивалась стремительно, всё более увеличивая дальность и массу несомого груза. В 1954 году началась работа над проектом, благодаря которому СССР смог первым осуществить полет космической ракеты. Это была межконтинентальная двухступенчатая баллистическая ракета Р-7, которую вскоре модернизировали для космоса. Она получилась на славу - исключительно надёжная, обеспечившая множество рекордов в освоении космического пространства. В модернизированном виде её используют до сих пор.

"Спутник" и "Луна"

В 1957 году первая космическая ракета - та самая Р-7 - вывела на орбиту искусственный "Спутник-1". США чуть позже решили повторить такой запуск. Однако в первую попытку их космическая ракета в космосе не побывала, она взорвалась на старте - даже в прямом эфире. "Авангард" был сконструирован чисто американской командой, и он не оправдал надежд. Тогда проектом занялся Вернер фон Браун, и в феврале 1958 года старт космической ракеты удался. А в СССР тем временем модернизировали Р-7 - к ней была добавлена третья ступень. В результате скорость космической ракеты стала совсем другой - была достигнута вторая космическая, благодаря которой появилась возможность покидать орбиту Земли. Ещё несколько лет серия Р-7 модернизировалась и совершенствовалась. Менялись двигатели космических ракет, много экспериментировали с третьей ступенью. Следующие попытки были удачными. Скорость космической ракеты позволяла не просто покинуть орбиту Земли, но и задуматься об изучении других планет Солнечной системы.

Но сначала внимание человечества было практически полностью приковано к естественному спутнику Земли - Луне. В 1959 году к ней вылетела советская космическая станция "Луна-1", которая должна была совершить жёсткую посадку на лунной поверхности. Однако аппарат из-за недостаточно точных расчётов прошёл несколько мимо (в шести тысячах километров) и устремился к Солнцу, где и пристроился на орбиту. Так у нашего светила появился первый собственный искусственный спутник - случайный подарок. Но наш естественный спутник недолго находился в одиночестве, и в этом же 1959-м к нему прилетела "Луна-2", выполнив свою задачу абсолютно правильно. Через месяц "Луна-3" доставила нам фотографии обратной стороны нашего ночного светила. А в 1966-м прямо в Океане Бурь мягко приземлилась "Луна-9", и мы получили панорамные виды лунной поверхности. Лунная программа продолжалась ещё долго, до той поры, когда американские космонавты на ней высадились.

Юрий Гагарин

День 12 апреля стал одним из самых знаменательных дней в нашей стране. Невозможно передать мощь народного ликования, гордости, поистине счастья, когда объявили о первом в мире полёте человека в космос. Юрий Гагарин стал не только национальным героем, ему рукоплескал весь мир. И потому 12 апреля 1961 года - день, триумфально вошедший в историю, стал Днём космонавтики. Американцы срочно попытались ответить на этот беспрецедентный шаг, чтобы разделить с нами космическую славу. Через месяц состоялся вылет Алана Шепарда, но на орбиту корабль не выходил, это был суборбитальный полёт по дуге, а орбитальный у США получился только в 1962-м.

Гагарин полетел в космос на космическом корабле "Восток". Это особая машина, в которой Королёв создал исключительно удачную, решающую множество всевозможных практических задач космическую платформу. Тогда же, в самом начале шестидесятых, разрабатывался не только пилотируемый вариант космического полёта, но был выполнен и проект фото-разведчика. "Восток" вообще имел множество модификаций - более сорока. И сегодня эксплуатируются спутники из серии "Бион" - это прямые потомки корабля, на котором совершён первый полёт человека в космос. В этом же 1961 году гораздо более сложная экспедиция была у Германа Титова, который целые сутки провёл в космосе. Соединённые Штаты смогли это достижение повторить только в 1963 году.

"Восток"

Для космонавтов на всех кораблях "Восток" было предусмотрено катапультное кресло. Это было мудрым решением, поскольку одно-единственное устройство выполняло задачи и на старте (аварийное спасение экипажа), и мягкую посадку спускаемого аппарата. Конструкторы сосредоточили усилия на разработке одного устройства, а не двух. Это уменьшало технический риск, в авиации система катапульт в то время уже была отлично отработана. С другой стороны, огромный выигрыш во времени, чем если проектировать принципиально новое устройство. Ведь космическая гонка продолжалась, и её выигрывал с довольно большим отрывом СССР.

Таким же образом приземлился и Титов. Ему повезло опуститься на парашюте около железной дороги, по которой ехал поезд, и его немедленно сфотографировали журналисты. Система посадки, которая стала самой надёжной и мягкой, разработана в 1965 году, в ней используется гамма-высотомер. Она служит и до сих пор. В США этой технологии не было, именно поэтому все их спускаемые аппараты, даже новые Dragon SpaceX не приземляются, а приводняются. Только шаттлы являются исключением. А в 1962 году СССР уже начал групповые полёты на космических кораблях "Восток-3" и "Восток-4". В 1963 году отряд советских космонавтов пополнился первой женщиной - Валентина Терешкова побывала в космосе, став первой в мире. Тогда же Валерий Быковский поставил не побитый до сих пор рекорд длительности одиночного полёта - он пробыл в космосе пять суток. В 1964 году появился многоместный корабль "Восход", США и тут отстали на целый год. А в 1965-м Алексей Леонов вышел в открытый космос!

"Венера"

В 1966 году СССР начал межпланетные перелёты. Космический корабль "Венера-3" совершил жёсткую посадку на соседнюю планету и доставил туда глобус Земли и вымпел СССР. В 1975-м "Венере-9" удалось совершить мягкую посадку и передать изображение поверхности планеты. А "Венера-13" сделала цветные панорамные снимки и звукозапись. Серия АМС (автоматические межпланетные станции) для изучения Венеры, а также окружающего космического пространства продолжает совершенствоваться и сейчас. На Венере условия жёсткие, а достоверной информации о них практически не было, разработчики ничего не знали ни о давлении, ни о температуре на поверхности планеты, всё это, естественно, осложняло исследование.

Первые серии спускаемых аппаратов даже плавать умели - на всякий случай. Тем не менее поначалу полёты удачными не были, зато впоследствии СССР настолько преуспел в венерианских странствиях, что эту планету стали называть русской. "Венера-1" - первый из космических аппаратов в истории человечества, предназначенный для полёта на другие планеты и их исследования. Был запущен в 1961 году, через неделю потерялась связь от перегрева датчика. Станция стала неуправляемой и смогла сделать только первый в мире пролёт вблизи Венеры (на расстоянии около ста тысяч километров).

По стопам

"Венера-4" помогла нам узнать, что на этой планете двести семьдесят один градус в тени (ночная сторона Венеры), давление до двадцати атмосфер, а сама атмосфера - девяносто процентов углекислого газа. А ещё этот космический аппарат обнаружил водородную корону. "Венера-5" и "Венера-6" многое поведали нам о солнечном ветре (потоки плазмы) и его структуре вблизи планеты. "Венера-7" уточнила данные о температуре и давлении в атмосфере. Всё оказалось ещё сложнее: температура ближе к поверхности была 475 ± 20°C, а давление выше на порядок. На следующем космическом аппарате было переделано буквально всё, и через сто семнадцать суток "Венера-8" мягко привенерилась на дневной стороне планеты. На этой станции был фотометр и множество дополнительных приборов. Главное - была связь.

Оказалось, что освещение на ближайшей соседке почти не отличается от земного - как у нас в пасмурный день. Да там не просто пасмурно, погодка разгулялась по-настоящему. Картины увиденного аппаратурой просто ошеломили землян. Помимо этого, был исследован грунт и количество аммиака в атмосфере, измерена скорость ветра. А "Венера-9" и "Венера-10" смогли показать нам "соседку" по телевизору. Это первые в мире записи, переданные с другой планеты. А сами эти станции и теперь искусственные спутники Венеры. На эту планету последними летали "Венера-15" и "Венера-16", которые тоже стали спутниками, предварительно снабдив человечество абсолютно новыми и нужными знаниями. В 1985 году продолжением программы стали "Вега-1" и "Вега-2", которые изучали не только Венеру, но и комету Галлея. Следующий полёт планируется в 2024 году.

Кое-что о космической ракете

Поскольку параметры и технические характеристики у всех ракет отличаются друг от друга, рассмотрим ракету-носитель нового поколения, например "Союз-2.1А". Она является трёхступенчатой ракетой среднего класса, модифицированным вариантом "Союза-У", который весьма успешно эксплуатируется с 1973 года.

Данная ракета-носитель предназначена для того, чтобы обеспечить запуск космических аппаратов. Последние могут иметь военное, народнохозяйственное и социальное назначение. Эта ракета может выводить их на разные типы орбит - геостационарные, геопереходные, солнечно-синхронные, высокоэллиптические, средние, низкие.

Модернизация

Ракета предельно модернизирована, здесь создана принципиально иная цифровая система управления, разработанная на новой отечественной элементной базе, с быстродействующей бортовой цифровой вычислительной машиной с гораздо большим объёмом оперативной памяти. Цифровая система управления обеспечивает ракету высокоточным выведением полезных нагрузок.

Кроме того, установлены двигатели, на которых усовершенствованы форсуночные головки первой и второй ступеней. Действует другая система телеизмерений. Таким образом повысилась точность выведения ракеты, её устойчивость и, разумеется, управляемость. Масса космической ракеты не увеличилась, а полезный выводимый груз стал больше на триста килограммов.

Технические характеристики

Первая и вторая ступени ракеты-носителя оснащены жидкостными ракетными двигателями РД-107А и РД-108А от НПО "Энергомаш" имени академика Глушко, а на третьей ступени установлен четырёхкамерный РД-0110 от КБ "Химавтоматики". Ракетным топливом служат жидкий кислород, являющийся экологически чистым окислителем, а также слаботоксичное горючее - керосин. Длина ракеты - 46,3 метра, масса на старте - 311,7 тонн, а без головной части - 303,2 тонны. Масса конструкции ракеты-носителя - 24,4 тонны. Компоненты топлива весят 278,8 тонн. Лётные испытания "Союза-2.1А" начались в 2004 году на космодроме Плесецк, и прошли они успешно. В 2006-м ракета-носитель произвела первый коммерческий полёт - вывела на орбиту европейский метеорологический космический аппарат "Метоп".

Нужно сказать, что у ракет разные возможности вывода полезной нагрузки. Носители есть лёгкие, средние и тяжёлые. Ракета-носитель "Рокот", например, выводит космические аппараты на околоземные низкие орбиты - до двухсот километров, а потому ей по силам нагрузка в 1,95 тонн. А вот "Протон" - тяжёлого класса, на низкую орбиту он может вывести 22,4 тонн, на геопереходную - 6,15, а на геостационарную - 3,3 тонны. Рассматриваемая нами ракета-носитель предназначена для всех площадок, которыми пользуется "Роскосмос": Куру, Байконур, Плесецк, Восточный, и работает в рамках совместных российско-европейских проектов.

Освоение космоса уже давно стало вполне обыденным делом для человечества. Но полеты на околоземную орбиту и к иным звездам немыслимы без устройств, позволяющих преодолевать земное притяжение – ракет. Многие ли из нас знают: как устроен и функционирует ракета-носитель, откуда происходит запуск и какова её скорость, позволяющая преодолеть притяжение планеты и в безвоздушном пространстве. Давайте подробнее разберемся в этих вопросах.

Устройство

Чтобы уяснить как работает ракета-носитель следует разобраться в её устройстве. Начнем описание узлов сверху к его нижней части.

САС

Аппарат, выводящий на орбиту спутник или грузовой отсек всегда отличает от носителя, который предназначен для транспортировки экипажа его конфигурация. У последнего в самом верху расположена специальная система аварийного спасения, служащая для эвакуации отсека с космонавтов при поломке ракета-носителя. Эта нестандартной формы башенка, размещенная на самом верху, является миниатюрной ракетой, позволяющей "вытянуть” капсулу с людьми вверх при экстраординарных обстоятельствах и сместить её на безопасное расстояние от точки аварии. Это актуально в начальной стадии полета, где ещё есть возможность провести парашютный спуск капсулы. В безвоздушном пространстве роль САС становиться не столь важна. В околоземном пространстве спасти космонавтов позволит функция, дающая возможность отделить от ракета-носителя спускаемый аппарат.

Грузовой отсек

Ниже САС расположен отсек, несущий полезную нагрузку: пилотируемый аппарат, спутник, грузовой отсек. Исходя от типа и класса ракета-носителя, масса выводимого на орбиту груза, может колебаться от 1,95 до 22,4 тонн. Весь транспортируемый кораблем груз защищен головным обтекателем, который сбрасывается после прохождения атмосферных слоёв.

Маршевый двигатель

Далекие от космоса люди думают, что если ракета оказалась в безвоздушном пространстве, на высоте ста километров, где начинается невесомость, то на этом её миссия окончена. На самом деле в зависимости от задачи, целевая орбита, выводимого в космос груза может находиться значительно дальше. Например, телекоммуникационные спутники необходимо транспортировать на орбиту, находящуюся на высоте более 35 тысяч километров. Чтобы достичь необходимого удаления и нужен маршевый двигатель, или как его по-другому называют – разгонный блок. Для выхода на запланированную межпланетную или отлетную траекторию следует не один раз менять скоростной режим полета, осуществляя определенные действия, поэтому этот двигатель должен неоднократно запускаться и выключаться, в этом его несходство с прочими аналогичными узлами ракеты.

Многоступенчатость

У ракета-носителя лишь малую долю его массы занимает транспортируемая полезная нагрузка, всё остальное – двигатели и топливные баки, которые расположены в разных ступенях аппарата. Конструктивной особенностью этих узлов является возможность их отделения после выработки топлива. После чего они сгорают в атмосфере, не достигая земли. Правда, как гласит новостной портал reactor.space , в последние годы была разработана технология, позволяющая возвращать в отведенную для этого точку отделившиеся ступеням невредимыми и вновь запускать их в космос. В ракетостроении при создании многоступенчатых кораблей используется две схемы:

  • Первая – продольная, позволяет размещать вокруг корпуса несколько одинаковых двигателей с топливом, одновременно включающихся и синхронно сбрасывающихся после использования.

  • Вторая – поперечная, дает возможность располагать ступени по возрастающей одну выше другой. В этом случае их включение происходит исключительно после сброса нижней, отработанной ступени.

Но часто конструкторы отдают предпочтение сочетанию поперечно-продольной схеме. Ступеней у ракеты может быть много, но увеличение их числа рационально до определенного предела. Их рост влечет за собой увеличение массы двигателей и переходников, работающих только на определенной стадии полета. Поэтому современные ракета-носители не комплектуются более чем четырьмя ступенями. В основном топливные баки ступеней состоят из резервуаров, в которых закачивается разные компоненты: окислитель (жидкий кислород, тетроксид азота) и горючее (жидкий водород, гептил). Только при их взаимодействии можно разогнать ракету до нужной скорости.

С какой скоростью летит ракета в космосе

В зависимости от задач, которые должен выполнить ракета-носитель ее скорость может разнится, подразделяясь на четыре величины:


  • Первая космическая. Она позволяет подняться на орбиту где она становиться спутником Земли. Если перевести на привычные значения, она равняется 8 км/с.

  • Вторая космическая. Скорость в 11,2 км/с. дает возможность преодолеть кораблю земное притяжение для исследований планет нашей солнечной системы.

  • Третья космическая. Придерживаясь скорости 16,650 км/с. можно преодолеть тяготение солнечной системы и покинуть её пределы.

  • Четвертая космическая. Развив скорость 550 км/с. ракета способна улететь за пределы галактики.

Но как бы ни были велики скорости космических аппаратов, для межпланетных путешествий они слишком малы. При таких значениях до ближайшей звезды придется добираться 18 000 лет.

Как называется место откуда запускают в космос ракеты

Для успешного покорения космоса необходимы специальные стартовые площадки, откуда можно запускать ракеты в космическое пространство. В повседневном обиходе их называют космодромами. Но это простое название включает в себя целый комплекс строений, занимающий огромные территории: стартовый стол, помещения для конечного испытания и сборки ракеты, здания сопутствующих служб. Всё это расположено в отдалении друг от друга, чтобы при аварии не пострадали другие сооружения космодрома.

Заключение

Чем более совершенствуются космические технологии, тем более сложным становится строение и работа ракеты. Может через несколько лет, будут созданы новые аппараты, для преодоления притяжения Земли. И следующая статья будет посвящена принципам работы более совершенной ракеты.

X-51AWaverider – это гиперзвуковая крылатая ракета. Это устройство было разработано в США. Создавали ракету по простым причинам – инженеры планировали сократить летное время высокоточных крылатых ракет. И сделать им это, в итоге, удалось на «отлично».

По проектным данным, X-51AWaverider должны разгоняться примерно до 7 тысяч километров в час. Весной 2007 года прошли первые испытания, правда, одного двигателя (он получил название SJX-61 и был произведен компанией «Pratt & Whitney»). Через два года создатели провели первые полноценные испытания X-51A. Но тогда ракету подвесили к специальному креплению на бомбардировщике B-52.

Во время первого полета гиперзвуковая ракета смогла развить скорость, которая в пять раз превосходила скорость звука. А почти за месяц до этого военно-воздушные силы США испытали еще один гиперзвуковой аппарат FHTV-2. Его скорость в полете была просто ошеломляющей – в двадцать раз выше скорости звука. Впрочем, две системы внешне совершенно не схожие. Однако, как говорят специалисты, у них все равно много общего. Так или иначе, испытания двух аппаратов прошли успешно лишь отчасти. Операторы в обоих случаях оказались лицом к лицу с явлением, которое не смогли объяснить.

Обрыв связи

Первый полет X-51A назначили на 25 мая 2010 года. Но практически за час до намеченного времени испытания было решено перенести на сутки. И причиной такой резкой перемены время стал сухогруз, который оказался на месте предполагаемого падения ракеты в Тихом океане. И на следующий день бомбардировщик B-52 Stratofortress вместе с X-51A под крылом взлетел в небо соответственно расписанию. Он набрал высоту в пятнадцать тысяч метров, оказался над Тихим океаном, сбросил ракету и вернулся обратно на базу.

Во время полета X-51A военно-воздушные силы США планировали собрать максимум информации с многочисленных сенсоров ракеты. В частности, были необходимы данные о тепловом воздействии на конструкцию системы, о поведении планера на гиперзвуковых скоростях и о работе двигателя с бортовым оборудованием.

По данным исследователей, которые участвовали в эксперименте, разгонная ступень X-51AWaverider вывела ракету на высоту примерно в 20 тысяч метров. Там включился гиперзвуковой прямоточный воздушно-реактивный двигатель, и ракета разогналась до 5,5 тысяч километров в час (4,8 маха). Далее система поднялась еще выше, на высоту 21,3 тысяч километров и достигла скорости в пять мах. Успехи на этом этапе завершились и появились многочисленные непонятные явления.

Согласно плану, ракета должны была разогнаться до скорости в шесть мах. А двигатель X-51A, при этом, должен был работать в течение 300 секунд. После этого ожидалось, что ракета упадет в Тихий океан. Оттуда, к слову, систему доставать никто не собирался. В итоге, двигатель ракеты работал примерно 200 секунд, а после операторы послали системе сигнал к самоуничтожению. И причиной этому послужило аномальное поведение бортового оборудования – приблизительно на 140 секунде самостоятельного полета данные телеметрии стали приходить с перебоями. И перерывы в связи становились все длиннее.

Испытательный полёт X-51A

Перед тем, как ракету запустили, у системы проверили тщательным образом все узлы и приборы. А за месяц до Х-51А, который разрабатывал концерн Boeing военно-воздушных сил США, было проведено испытание гиперзвукового аппарата FHTV-2 (Falcon Hypersonic Technology Vehicle 2). И оно тоже завершилось прерыванием связи. Полет произвели весной 2010 года. Тогда инженеры, которые были заняты в проектах X-51A и FHTV-2, никаких объяснений не дали. Но специалисты тут же начали выводы первого полета учитывать при следующих испытаниях гиперзвуковых аппаратов.

Стоит отметить, что оба проекта очень интересны американским военным. И в первую очередь, Пентагону, который разработал концепцию «Быстрого глобального реагирования». FHTV-2 создают только в рамках этой концепции, а вот X-51A, по плану, присоединится к ней сразу после завершения всех исследовательских испытаний.

Впрочем, про FHTV-2 распространяются неохотно, поэтому про проект известно не много. Не исключено, что FHTV, который оснастили обычной боеголовкой, будут использовать вместо баллистических ракет. Но запуск последних другие страны могут расценить как ядерную угрозу. Военно-воздушные силы США тоже рассматривают возможности применения аппаратов, таких как FHTV, но как систему разведки и наблюдения. В этой роли они могут выступить, если из строя выведут спутники-шпионы, которые расположены на низких околоземных орбитах. Ну а кроме, планируется FHTV использовать для оперативного вывода разных спутников на околоземную орбиту.


Так или иначе, представители ВВС США оказались по-настоящему счастливы после запусков самых быстрых высокоточных ракет. Руководители проекта сравнили эти процедуры с гигантским скачком в двигателестроение, который произошел от пропеллерной авиации к реактивным самолетам.

К слову, программа испытаний быстрейших ракет не закончилась. Теперь сотрудники военно-воздушных сил США планируют создать мощнейшее оружие, которому будет под силу в максимально короткие сроки наносить удары по любой точке земли. Таким образом военные планируют бороться с терроризмом. В качестве примера американцы привели ситуацию 1998 года. Тогда нескольким боевым кораблям, которые располагались в Аравийском море, отдали приказ выпустить сразу несколько ракет типа Tomahawk. Они должны были попасть по лагерю, где в тот момент был Усама бен Ладен со сторонниками. Но ракеты оказались в положенном месте только через два часа. За это время террорист номер один в мире успел покинуть лагерь и скрыться. В случае, если бы в то время в распоряжении специалистов оказалась X-51A Waverider, ракета преодолела бы расстояние максимум за 20 минут.
Подпишитесь на наш канал в Яндекс.Дзен