1 оксиды получение свойства. Получение оксидов и их свойства

В уроке 33 «» из курса «Химия для чайников » узнаем как получать оксиды различными способами, а также познакомимся с широким спектром применения оксидов во всех отраслях промышленности и быта.

Получение оксидов

1. Взаимодействие простых веществ с кислородом

Некоторые оксиды образуются в результате сжигания в кислороде (или на воздухе) соответствующих простых веществ. Так можно получить оксиды углерода(IV), серы(IV), фосфора(V), магния и других неметаллов и металлов:

2. Взаимодействие сложных веществ с кислородом

Оксиды можно получать также сжиганием в кислороде (или на воздухе) некоторых сложных веществ, например:

3. Термическое разложение нерастворимых оснований

Применение оксидов

Один из наиболее широко использующихся оксидов - вода H 2 O, о применении которой в быту, технике и ромышленности вы уже знаете.

Разнообразное применение находят и некоторые другие оксиды. Так, например, из оксида железа(III) Fe 2 O 3 , входящего в состав железных руд, в промышленности получают железо, а из оксида алюминия Al 2 O 3 - алюминий. Оксид алюминия применяют также для изготовления искусственных драгоценных камней - рубина и сапфира. Мелкие кристаллы этого оксида применяются также в производстве наждачной бумаги.

Оксид углерода(IV) (углекислый газ) используют в пищевой промышленности для изготовления всех газированных напитков, для увеличения срока сохранности фруктов и овощей. Этим веществом наполняют углекислотные огнетушители. Твердый оксид углерода(IV) под названием «сухой лед» (рис. 117) применяют для хранения мороженого, для сильного охлаждения различных материалов.

Достаточно широко используется и оксид серы(IV) SO 2 (сернистый газ). Он находит применение в производстве серной кислоты, для дезинфекции складских помещений, уничтожения вредных насекомых и бактерий, отбеливания бумаги.

Оксид кремния(IV) SiO 2 в виде кварцевого песка используется в производстве стекла и бетона. Вместе с оксидом свинца(II) PbO он применяется для изготовления полудрагоценных камней и украшений («кристаллы Сваровски»).

Оксид кальция СaO под названием «негашеная известь» применяют при изготовлении различных строительных материалов. Оксиды некоторых других металлов находят применение в производстве красок. Так, например, Fe 2 O 3 используют для изготовления краски коричневого, Сr 2 O 3 - зеленого, ZnO и TiO 2 - белого цветов.

Краткие выводы урока:

  1. Оксиды образуются при взаимодействии кислорода с простыми и сложными веществами.
  2. Оксиды можно получить термическим разложением нерастворимых оснований.
  3. Оксиды находят широкое практическое применение в промышленности и в быту.
  4. Оксиды - вода H 2 O и углекислый газ СО 2 - участвуют в процессе фотосинтеза.

Надеюсь урок 33 «Получение и применение оксидов » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

Оксиды.

Это – сложные вещества состоящие из ДВУХ элементов, один из которых кислород. Например:

CuO– оксид меди(II)

AI 2 O 3 – оксид алюминия

SO 3 – оксид серы (VI)

Оксиды делятся (их классифицируют) на 4 группы:

Na 2 O– Оксид натрия

СаО – Оксид кальция

Fe 2 O 3 – оксид железа (III)

2). Кислотные – Это оксидынеметаллов . А иногда и металлов если степень окисления металла > 4. Например:

СО 2 – Оксид углерода (IV)

Р 2 О 5 – Оксид фосфора (V)

SO 3 – Оксид серы (VI)

3). Амфотерные – Это оксиды которые имеют свойства, как основных так и кислотных оксидов. Необходимо знать пять наиболее часто встречающихся амфотерных оксидов:

BeO–оксид бериллия

ZnO– Оксид цинка

AI 2 O 3 – Оксид алюминия

Cr 2 O 3 – Оксид хрома (III)

Fe 2 O 3 – Оксид железа (III)

4). Несолеобразующие (безразличные) – Это оксиды которые не проявляют свойств ни основных, ни кислотных оксидов. Необходимо запомнить три оксида:

СО – оксид углерода (II) угарный газ

NO– оксид азота (II)

N 2 O– оксид азота (I) веселящий газ, закись азота

Способы получения оксидов.

1). Горение, т.е. взаимодействие с кислородом простого вещества:

4Na + O 2 = 2Na 2 O

4P + 5O 2 = 2P 2 O 5

2). Горение, т.е. взаимодействие с кислородом сложного вещества (состоящего из двух элементов ) при этом образуются два оксида.

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

3). Разложение трех слабых кислот. Другие не разлагаются. При этом образуются – кислотный оксид и вода.

Н 2 СО 3 = Н 2 О + СО 2

Н 2 SO 3 = H 2 O + SO 2

H 2 SiO 3 = H 2 O + SiO 2

4). Разложение нерастворимых оснований. Образуются основный оксид и вода.

Mg(OH) 2 = MgO + H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

5). Разложение нерастворимых солей. Образуются основный оксид и кислотный оксид.

СаСО 3 = СаО + СО 2

МgSO 3 = MgO + SO 2

Химические свойства.

I . Основных оксидов.

щелочь.

Na 2 O + H 2 O = 2NaOH

CaO + H 2 O = Ca(OH) 2

СuO + H 2 O = реакция не протекает, т.к. возможное основание в состав которого входит медь - нерастворимо

2). Взаимодействие с кислотами, при этом образуется соль и вода. (Основный оксид и кислоты реагируют ВСЕГДА)

К 2 О + 2НСI = 2KCl + H 2 O

CaO + 2HNO 3 = Ca(NO 3) 2 + H 2 O

3). Взаимодействие с кислотными оксидами, при этом образуется соль.

Li 2 O + CO 2 = Li 2 CO 3

3MgO + P 2 O 5 = Mg 3 (PO 4) 2

4). Взаимодействие с водородом, при этом образуется металл и вода.

CuO + H 2 = Cu + H 2 O

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

II. Кислотных оксидов.

1). Взаимодействие с водой, при этом должна образоваться кислота. (Только SiO 2 не взаимодействует с водой)

CO 2 + H 2 O = H 2 CO 3

P 2 O 5 + 3H 2 O = 2H 3 PO 4

2). Взаимодействие с растворимыми основаниями (щелочами). При этом образуется соль и вода.

SO 3 + 2KOH = K 2 SO 4 + H 2 O

N 2 O 5 + 2KOH = 2KNO 3 + H 2 O

3). Взаимодействие с основными оксидами. При этом образуется только соль.

N 2 O 5 + K 2 O = 2KNO 3

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3

Основные упражнения.

1). Закончить уравнение реакции. Определить её тип.

К 2 О + Р 2 О 5 =

Решение.

Что бы записать, что образуется в результате – необходимо определить – какие вещества вступили в реакцию – здесь это оксид калия (основный) и оксид фосфора (кислотный) согласно свойств – в результате должна получиться СОЛЬ (смотри свойство № 3) а соль состоит из атомов металлов (в нашем случае калия) и кислотного остатка в состав которого входит фосфор (т.е. РО 4 -3 – фосфат) Поэтому

3К 2 О + Р 2 О 5 = 2К 3 РО 4

тип реакции – соединение (так как вступают в реакцию два вещества, а образуется – одно)

2). Осуществить превращения (цепочка).

Са → СаО → Са(ОН) 2 → СаСО 3 → СаО

Решение

Для выполнения этого упражнения необходимо помнить, что каждая стрелочка это одно уравнение (одна химическая реакция). Пронумеруем каждую стрелочку. Следовательно, необходимо записать 4 уравнения. Вещество записанное слева от стрелочки(исходное вещество) вступает в реакцию, а вещество записанное справа – образуется в результате реакции(продукт реакции). Расшифруем первую часть записи:

Са + …..→ СаО Мы обращаем внимание, что вступает в реакцию простое вещество, а образуется оксид. Зная способы получения оксидов (№ 1) приходим к выводу, что в данной реакции необходимо добавить –кислород (О 2)

2Са + О 2 → 2СаО

Переходим к превращению № 2

СаО → Са(ОН) 2

СаО + ……→ Са(ОН) 2

Приходим к выводу, что здесь необходимо применить свойство основных оксидов – взаимодействие с водой, т.к. только в этом случае из оксида образуется основание.

СаО + Н 2 О → Са(ОН) 2

Переходим к превращению № 3

Са(ОН) 2 → СаСО 3

Сa(OH) 2 + ….. = CaCO 3 + …….

Приходим к выводу, что здесь речь идет об углекислом газе СО 2 т.к. только он при взаимодействии со щелочами образует соль (смотри свойство № 2 кислотных оксидов)

Сa(OH) 2 + СО 2 = CaCO 3 + Н 2 О

Переходим к превращению № 4

СаСО 3 → СаО

СаСО 3 = ….. СаО + ……

Приходим к выводу что здесь образуется еще СО 2 , т.к. СаСО 3 нерастворимая соль и именно при разложении таких веществ образуются оксиды.

СаСО 3 = СаО + СО 2

3). С какими из перечисленных веществ взаимодействует СО 2 . Напишите уравнения реакций.

А). Соляная кислота Б). Гидроксид натрия В). Оксид калия г). Вода

Д). Водород Е). Оксид серы (IV).

Определяем, что СО 2 – это кислотный оксид. А кислотные оксиды вступают в реакции с водой, щелочами и основными оксидами … Следовательно из приведенного списка выбираем ответы Б, В, Г И именно с ними записываем уравнения реакций:

1). СО 2 + 2NaOH = Na 2 CO 3 + H 2 O

2). CO 2 + K 2 O = K 2 CO 3

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

I, II

неМе

CO, NO, N 2 O

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII (Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):


3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III , иногда IV , а также цинк и бериллий (Например, BeO , ZnO , Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O , NO , CO ).

Вывод:характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

CrO ( II - основный);

Cr 2 O 3 ( III - амфотерный);

CrO 3 ( VII - кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение – SiO 2

(не растворим в воде)

В воде растворяются только оксиды щелочных и щелочноземельных металлов

(это металлы

I «А» и II «А» групп,

исключение Be , Mg )

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выпишите оксиды и классифицируйте их.

Получение оксидов

Тренажёр "Взаимодействие кислорода с простыми веществами"

1. Горение веществ (Окисление кислородом)

а) простых веществ

Тренажёр

2Mg +O 2 =2MgO

б) сложных веществ

2H 2 S+3O 2 =2H 2 O+2SO 2

2.Разложение сложных веществ

(используйте таблицу кислот, см. приложения)

а) солей

СОЛЬ t = ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO 3 =CaO+CO 2

б) Нерастворимых оснований

Ме(ОН) b t = Me x O y + H 2 O

Cu (OH) 2 t =CuO+H 2 O

в) кислородсодержащих кислот

Н n A = КИСЛОТНЫЙ ОКСИД + H 2 O

H 2 SO 3 =H 2 O+SO 2

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

2. Основной оксид + Кислота = Соль + Н 2 О (р. обмена)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Вода = Щёлочь (р. соединения)

Na 2 O + H 2 O = 2 NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

1. Кислотный оксид + Вода = Кислота (р. соединения)

С O 2 + H 2 O = H 2 CO 3 , SiO 2 – не реагирует

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

P 2 O 5 + 6 KOH = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

4. Менее летучие вытесняют более летучие из их солей

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [ Zn (OH ) 4 ] (в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO 3 + H 2 O = H 2 SO 4

CaO + H 2 O = Ca ( OH ) 2

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Благодаря нерастворимости и прочности оксида хрома (III) его используют и в полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды многих металлов применяются в качестве пигментов для самых разнообразных красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выберите из перечня: основные оксиды, кислотные оксиды, безразличные оксиды, амфотерные оксиды и дайте им названия .

3. Закончите УХР, укажите тип реакции, назовите продукты реакции

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 =

K 2 O + CO 2 =

Cu(OH) 2 = ? + ?

4. Осуществите превращения по схеме:

1) K → K 2 O → KOH → K 2 SO 4

2) S→SO 2 →H 2 SO 3 →Na 2 SO 3

3) P→P 2 O 5 →H 3 PO 4 →K 3 PO 4

Вещества, составляющие основу нашего физического мира, состоят из разных видов химических элементов. Четыре из них встречаются чаще всех остальных. Это водород, углерод, азот и кислород. Последний элемент может связываться с частицами металлов или неметаллов и образовывать бинарные соединения - окислы. В нашей статье мы изучим наиболее важные способы получения оксидов в лабораторных условиях и промышленности. Также рассмотрим их основные физические и химические свойства.

Агрегатное состояние

Оксиды, или окислы, существуют в трех состояниях: газообразном, жидком и твердом. Например, к первой группе относятся такие известные и широко распространенные в природе соединения, как углекислый газ - CO 2 , угарный газ - CO, двуокись серы - SO 2 и другие. В жидкой фазе существуют такие окислы, как вода - H 2 O, серный ангидрид - SO 3 , оксид азота - N 2 O 3 . Получение оксидов, названных нами, можно осуществить в лаборатории, однако такие из них, как и трехокись серы, добывают и в промышленности. Это связано с применением этих соединений в технологических циклах выплавки железа и получения сульфатной кислоты. Угарным газом восстанавливают железо из руды, а серный ангидрид растворяют в сульфатной кислоте и добывают олеум.

Классификация окислов

Можно выделить несколько видов кислородсодержащих веществ, состоящих из двух элементов. Химические свойства и способы получения оксидов будут зависеть от того, к какой из перечисленных групп относится вещество. углерода, получают прямым соединением углерода с кислородом, проводя реакцию жесткого окисления. Углекислый газ можно выделить и в процессе обмена и сильных неорганических кислот:

HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

Какая же реакция является визитной карточкой кислотных оксидов? Это их взаимодействие со щелочами:

SO 2 + 2NaOH → Na 2 SO 3 + H 2 O

Амфотерные и несолеобразующие окислы

Безразличные окислы, например CO или N 2 O, не способны к реакциям, ведущим к появлению солей. С другой стороны, большинство кислотных оксидов могут вступать в реакцию с водой, образуя кислоты. Однако для оксида кремния это невозможно. Силикатную кислоту целесообразно получить косвенным путем: из силикатов, реагирующих с сильными кислотами. Амфотерными будут такие бинарные соединения с кислородом, которые способны к реакциям как со щелочами, так и с кислотами. В эту группу мы отнесем следующие соединения - это известные окислы алюминия и цинка.

Получение оксидов серы

В своих соединениях с кислородом сера проявляет различную валентность. Так, в сернистом газе, формула которого SO 2 , она четырехвалентна. В лаборатории диоксид серы получают в реакции между сульфатной кислотой и гидросульфитом натрия, уравнение которой имеет вид

NaHSO 3 + H 2 SO 4 → NaHSO 4 + SO 2 + H 2 O

Еще один способ добычи SO 2 - это окислительно-восстановительный процесс между медью и сульфатной кислотой высокой концентрации. Третий лабораторный метод получения оксидов серы - сжигание под вытяжкой образца простого вещества серы:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

В промышленности диоксид серы можно добыть выжиганием серосодержащих минералов цинка или свинца, а также обжигом пирита FeS 2 . Полученный таким методом сернистый газ используют для добычи трехокиси серы SO 3 и далее - сульфатной кислоты. Двуокись серы с другими веществами ведет себя как окись с кислотными признаками. Например, ее взаимодействие с водой приводит к образованию сульфитной кислоты H 2 SO 3:

SO 2 + H 2 O = H 2 SO 3

Данная реакция является обратимой. Степень диссоциации кислоты невелика, поэтому соединение относят к слабым электролитам, да и сама сернистая кислота может существовать только в водном растворе. В нем всегда присутствуют молекулы сернистого ангидрида, которые придают веществу резкий запах. Раагирующая смесь находится в состоянии равенства концентрации реагентов и продуктов, которое можно сместить, изменяя условия. Так, при добавлении к раствору щелочи реакция будет проходить слева направо. В случае выведения из сферы реакции сернистого ангидрида нагреванием или продуванием через смесь газообразного азота динамическое равновесие будет смещаться влево.

Серный ангидрид

Продолжим рассматривать свойства и способы получения оксидов серы. Если сжечь сернистый ангидрид, то в результате образуется оксид, в котором сера имеет степень окисления +6. Это трехокись серы. Соединение находится в жидкой фазе, быстро твердеет в виде кристаллов при температуре ниже 16 °С. Кристаллическое вещество может быть представлено несколькими аллотропными модификациями, отличающимися строением кристаллической решетки и температурами плавления. Серный ангидрид проявляет свойства восстановителя. Взаимодействуя с водой, он образует аэрозоль сульфатной кислоты, поэтому в промышленности H 2 SO 4 добывают, растворяя серный ангидрид в концентрированной В результате образуется олеум. Добавляя в него воду, и получают раствор серной кислоты.

Основные окислы

Изучив свойства и получение оксидов серы, относящихся к группе кислотных бинарных соединений с кислородом, рассмотрим кислородные соединения металлических элементов.

Основные окислы можно определить по такому признаку, как наличие в составе молекул частиц металлов главных подгрупп первой или второй групп периодической системы. Они относятся к щелочным или щелочноземельным. Например, окись натрия - Na 2 O может реагировать с водой, в результате чего образуются химически агрессивные гидроксиды - щелочи. Однако главное химическое свойство основных оксидов - это взаимодействие с органическими или неорганическими кислотами. Оно идет с образованием соли и воды. Если к белому порошковидному оксиду меди добавить соляной кислоты, то обнаружим голубовато-зеленый раствор хлорида меди:

CuO + 2HCl = CuCl 2 + H 2 O

Нагревание твердых нерастворимых гидроксидов - еще один важных способов получения основных оксидов:

Ca(OH) 2 → CaO + H 2 O

Условия: 520-580 °C.

В нашей статье мы рассмотрели наиболее важные свойства бинарных соединений с кислородом, а также способы получения оксидов в лаборатории и промышленности.

1. Окисление простых веществ кислородом (сжигание простых веществ):

2 Mg + O 2 = 2М g О

4Р + 5 O 2 = 2Р 2 О 5 .

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды (Na 2 O 2 , K 2 O 2 ) .

Не окисляются кислородом воздуха благородные металлы, напрмер, А u , А g , Р t .

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O 2 = 2ZnO + 2SO 2

2 Н 2 S + 3O 2 = 2SO 2 + 2 Н 2 О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

С u (ОН) 2 С u О + Н 2 О

H 2 SO 3 SO 2 + H 2 O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО 3 СаО + СО 2

b (NO 3 ) 2 b О + 4 NO 2 + O 2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

1.1.7. Области применения оксидов.

Ряд природных минералов представляют собой оксиды (см. табл.7) и используются как рудное сырье для получения соответствующих металлов.

Например:

Боксит А1 2 O 3 · nH 2 O .

Гематит Fe 2 O 3 .

Магнетит F еО · Fe 2 O 3 .

Касситерит SnO 2 .

Пиролюзит М nO 2 .

Рутил Т i О 2 .

Минерал корунд (А1 2 O 3 ) обладающий большой твердостью, используют как абразивный материал. Его прозрачные, окрашенные в красный и синий цвет кристаллы представляют собой драгоценные камни - рубин и сапфир.

Негашеная известь (CaO ) , получаемая обжигом известняка (СаСО 3 ) , находит широкое применение в строительстве, сельском хозяйстве и как реагент для буровых растворов.

Оксиды железа (F е 2 О 3 , F е 3 О 4 ) используются при бурении нефтяных и газовых скважин в качестве утяжелителей и реагентов-нейтрализаторов сероводорода.

Оксид кремния (IV) (SiO 2 ) в виде кварцевого песка широко используется для производства стекла, цемента и эмалей, для пескоструйной обработки поверхности металлов, для гидропескоструйной перфорации и при гидроразрыве в нефтяных и газовых скважинах. В виде мельчайших сферических частиц (аэрозоля) находит применение в качестве эффективного пеногасителя буровых растворов и наполнителя при производстве резинотехнических изделий (белая резина).

Ряд оксидов (А1 2 O 3 , Cr 2 O 3 , V 2 O 5 , С u О, N О) используются в качестве катализаторов в современных химических производствах.

Являющийся одним из главных продуктов сгорания угля, нефти и нефтепродуктов углекислый газ (СО 2) при закачке в продуктивные пласты способствует повышению их нефтеотдачи. Используется СО 2 также для заполнения огнетушителей и газирования напитков.

Образующиеся при нарушении режимов сгорания топлива (NO, СО) или при сгорании сернистого топлива (SO 2) оксиды являются продуктами загрязняющими атмосферу. Современное производство, а также транспорт предусматривают строгий контроль за содержанием таких оксидов и их нейтрализацию,

Оксиды азота (NO, NO 2) и серы (SO 2 , SO 3) являются промежуточными продуктами в крупнотоннажных производствах азотной (НNO 3) и серной (Н 2 SО 4) кислот.

Оксиды хрома (Сг 2 O 3) и свинца (2РbО · РbО 2 - сурик) используются для производства антикоррозионных красочных составов.