Сернистая кислота: химические свойства, получение. Соединения серы(1У). Сернистая кислота

Серная кислота H 2 SO 4 - одна из сильных двухосновных кислот. В разбавленном состоянии она окисляет почти все металлы, кроме золота и платины. Интенсивно реагирует с неметаллами и органическими веществами, превращая некоторые из них в уголь. При приготовлении раствора серной кислоты всегда надо её приливать к воде, а не наоборот, во избежание разбрызгивания кислоты и вскипания воды. При 10 °С затвердевает, образуя прозрачную стекловидную массу. При нагревании 100-процентная серная кислота легко теряет серный ангидрид (триокись серы SO 3) до тех пор, пока её концентрация не составит 98 %. Именно в таком состоянии её обычно и используют в лабораториях. В концентрированном (безводном) состоянии серная кислота - бесцветная, дымящаяся на воздухе (из-за паров), маслянистая жидкость с характерным запахом (Т кипения=338 °С). Она является очень сильным окислителем. Это вещество обладает всеми свойствами кислот:

Химические свойства серной кислоты

H 2 SO 4 + Fe → FeSO 4 + H 2 ;

2H 2 SO 4 + Cu → CuSO 4 + SO 2 +2H 2 O - в этом случае кислота является концентрированной.

H 2 SO 4 + CuO → CuSO 4 + H 2 O

Получающийся раствор синего цвета - CuSO 4 - раствор медного купороса. Серную кислоту еще называют купоросным маслом , так как при реакциях с металлами и их оксидами образуются купоросы. Например, при химической реакции с железом (Fe) - образуется светло-зелёный раствор железного купороса.

Химическая реакция с основаниями и щелочами (или реакция нейтрализации)

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O

Сернистая кислота (или правильнее сказать - раствор сернистого газа в воде) образует два вида солей: сульфиты и гидросульфиты . Эти соли являются восстановителями.

Н 2 SO 4 + NaOH → NaНSO 3 + Н 2 O - такая реакция протекает при избытке сернистой кислоты

Н 2 SO 4 + 2NaOH → Na 2 SO 3 + 2Н 2 O - а эта реакция протекает при избытке едкого натра

Сернистая кислота обладает отбеливающим действием. Всем известно, что подобным действием обладает и хлорная вода. Но отличие заключается в том, что в отличии от хлора сернистый газ не разрушает красители, а образует с ними неокрашенные химические соединения!

Кроме основных свойств кислот сернистая кислота способна обесцвечивать раствор марганцовки по следующему уравнению:

5Н 2 SO 3 +2KMnO 4 → 2 Н 2 SO 4 +2MnSO 4 +K 2 SO 4 +Н 2 O

В этой реакции образуется бледно-розовый раствор, состоящий из сульфатов калия, марганца. Окраска обусловлена именно сульфатом марганца.

Сернистая кислота способна обесцветить бром

Н 2 SO 3 + Br 2 + Н 2 O → Н 2 SO 4 + 2HBr

В этой реакции образуется раствор, состоящий сразу из 2-х сильных кислот: серной и бромной.

Если хранить сернистую кислоту при доступе воздуха, то этот раствор окисляется и превращается в серную кислоту

2Н 2 SO 3 + O 2 → 2Н 2 SO 2

В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO 2 реагирует с более сильными восстановителями, например с :

SO 2 + 2H 2 S = 3S↓ + 2H 2 O

Как восстановитель SO 2 реагирует с более сильными окислителями, например с в присутствии катализатора, с и т.д.:

2SO 2 + O 2 = 2SO 3

SO 2 + Cl 2 + 2H 2 O = H 2 SO 3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

2) В промышленности его получают при обжиге пирита:

3) В лаборатории сернистый газ можно получить:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO 2 идет на получение серной кислоты.

Оксид серы (VI ) – SO 3 (серный ангидрид)

Серный ангидрид SO 3 – это бесцветная жидкость, которая при температуре ниже 17 о С превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

SO 3 + CaO = CaSO 4

в) с водой:

SO 3 + H 2 O = H 2 SO 4

Особым свойством SO 3 является его способность хорошо растворяться в серной кислоте. Раствор SO 3 в серной кислоте имеет название олеум.

Образование олеума: H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO 2):

3SO 3 + H 2 S = 4SO 2 + H 2 O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO 2 + O 2 = 2SO 3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

H 2 SO 4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков. Ее получали, прокаливая на воздухе железный купорос (FeSO 4 ∙7H 2 O): 2FeSO 4 = Fe 2 O 3 + SO 3 + SO 2 либо смесь с : 6KNO 3 + 5S = 3K 2 SO 4 + 2SO 3 + 3N 2 , а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум. В зависимости от способа приготовления H 2 SO 4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя. Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух. Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт ). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H 2 SO 4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

H 2 SO 4 + NaOH = Na 2 SO 4 + 2H 2 O

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

Процесс взаимодействия ионов Ва 2+ с сульфат-ионами SO 4 2+ приводит к образованию белого нерастворимого осадка BaSO 4 . Это качественная реакция на сульфат-ион .

Окислительно – восстановительные свойства

В разбавленной H 2 SO 4 окислителями являются ионы Н + , а в концентрированной – сульфат-ионы SO 4 2+ . Ионы SO 4 2+ являются более сильными окислителями, чем ионы Н + (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода . При этом образуются сульфаты металлов и выделяется :

Zn + H 2 SO 4 = ZnSO 4 + H 2

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H 2 SO 4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие , и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO 2 .

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной . Например, при взаимодействии серной кислоты с , в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO 2 , S, H 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например и , поэтому ее перевозят в железных цистернах:

Fe + H 2 SO 4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы ( , и др.), восстанавливаясь до оксида серы (IV) SO 2:

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O

C + 2H 2 SO 4 = 2SO 2 + CO 2 + 2H 2 O

Получение и применение

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO 2 путем обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

  1. Окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия (V):

2SO 2 + O 2 = 2SO 3

  1. Растворение SO 3 в серной кислоте:

H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H 2 SO 4 ∙ n SO 3 + H 2 O = H 2 SO 4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты


Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO 4 , еще менее PbSO 4 и практически нерастворим BaSO 4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO 4 ∙ 5H 2 O медный купорос

FeSO 4 ∙ 7H 2 O железный купорос

Соли серной кислоты имеют все . Особенным является их отношение к нагреванию.

Сульфаты активных металлов ( , ) не разлагаются даже при 1000 о С, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO 3:

CuSO 4 = CuO + SO 3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом»

Скачать рефераты по другим темам можно

*на изображении записи фотография медного купороса

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 200С растворяется 40 объемов SО2). При этом образуется существующая только в водном растворе сернистая кислота:

SO2+ Н2О = Н2SO3

Реакция соединения SO2с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН2SO3щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO2(продувание через раствор азота или нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н2SO3диссоциирует ступенчато:

Н2SО3 H+ + HSO4 –

HSO3 -H++ SO3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н2SO3 + 2NаОН =NаHSО4+ 2Н2О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н2SO3+NаОН = NаНSO3+ Н2О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н2SО3легко окисляется в серную кислоту даже кислородом воздуха:

2Н2SO3+O2= 2Н2SO4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н2SО3+ Вr2+ Н2О = Н2SO4 + 2НВr

5Н2S03+ 2КмnО4= 2Н2SO4+ 2МnSO4+ К2SО4+ 2Н2О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO2 иН2SO4отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca(HSO3)2(сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н2S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода). Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н2Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.


Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = FеСl2+ Н2S

Эту реакцию часто проводят в аппарате Киппа.

Н2S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Газообразный Н2Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2Н2S+ 3O2= 2SO2+ 2Н2О

При недостатке кислорода образуются сера и вода:

2Н2S+O2= 2S+ 2Н2О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н2Sсравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н2S - 2е- = S + 2H + 2

O2 + 4е- = 2O 2- 1

В этом случае Н2Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2Н2S + O2 = 2S + 2Н2O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н2S + I2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, Nа2S - сульфид натрия,NаНS- гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

СuSO4 + Н2S = CuS + H2SO4

Некоторые сульфиды имеют характерную окраску: CuSиРbS - черную,СdS- желтую,ZnS- белую,MnS- розовую,SnS- коричне­вую,Sb2S3- оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

БИЛЕТ №39

Серная кислота. Получение. Физические и химические свойства. Значение серной кислоты.

Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

Неразбавленная серная кислота представляет собой ковалентное соединение.

В молекуле серная кислота тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Связи S – O – двойные, а S – OH – одинарные.

Бесцветные, похожие на лед кристаллы имеют слоистую структуру: каждая молекула H 2 SO 4 соединена с четырьмя соседними прочными водородными связями, образуя единый пространственный каркас.

Структура жидкой серной кислоты похожа на структуру твердой, только целостность пространственного каркаса нарушена.

Физические свойства серной кислоты

При обычных условиях серная кислота – тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO 3: Н 2 О меньше 1, то это водный раствор серной кислоты, если больше 1, – раствор SO 3 в серной кислоте.

100 %-ная H 2 SO 4 кристаллизуется при 10,45 °С; Т кип = 296,2 °С; плотность 1,98 г/см 3 . H 2 SO 4 смешивается с Н 2 О и SO 3 в любых соотношениях с образованием гидратов, теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

При нагревании и кипении водных растворов серной кислоты, содержащих до 70 % H 2 SO 4 , в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты.

По структурным особенностям и аномалиям жидкая серная кислота похожа на воду. Здесь та же система водородных связей, почти такой же пространственный каркас.

Химические свойства серной кислоты

Серная кислота – одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

    В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:

H 2 SO 4 = H + + HSO 4 - ;

HSO 4 - = H + + SO 4 2- .

Суммарное уравнение:

H 2 SO 4 = 2H + + SO 4 2- .

    Проявляет свойства кислот , реагирует с металлами, оксидами металлов, основаниями и солями.

Разбавленная серная кислота не проявляет окислительных свойств, при ее взаимодействии с металлами выделяется водород и соль, содержащая металл в низшей степени окисления. На холоде кислота инертна по отношению к таким металлам, как железо, алюминий и даже барий.

Концентрированная кислота обладает окислительными свойствами. Возможные продукты взаимодействия простых веществ с концентрированной серной кислотой приведены в таблице. Показана зависимость продукта восстановления от концентрации кислоты и степени активности металла: чем активнее металл, тем глубже он восстанавливает сульфат-ион серной кислоты.

    Взаимодействие с оксидами:

CaO + H 2 SO 4 = CaSO 4 = H 2 O.

Взаимодействие с основаниями:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O.

Взаимодействие с солями:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

    Окислительные свойства

Серная кислота окисляет HI и НВг до свободных галогенов:

H 2 SO 4 + 2HI = I 2 + 2H 2 O + SO 2.

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:

С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:

C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .

Сернистая кислота способна реагировать с кислородом. При этом образуется серная кислота. Такая реакция протекает очень долго и возможна только при нарушении правил хранения. Сернистая кислота обладает как окислительными, так и восстановительными свойствами. С ее помощью можно получать галогенные кислоты. Водный раствор при реакции с хлором образует соляную и серную кислоту.

При реакции с сильными восстановителями сернистая кислота играет роль окислителя. Одним из таких веществ является сероводород, газ с очень неприятным запахом. Взаимодействуя с водным раствором серной кислоты, он образует серу и воду. Соли сернистой кислоты также обладают восстановительными свойствами. Они делятся на сульфиты и гидросульфиты. При реакциях окисления этих солей образуется серная кислота.

Получение сернистой кислоты

Сернистая кислота образуется только при взаимодействии сернистого газа и воды. Нужно получить сернистый газ. Это можно сделать при помощи меди и серной кислоты. Осторожно налейте концентрированную серную кислоту в пробирку и бросьте туда кусочек меди. Нагрейте пробирку при помощи спиртовки.

В результате нагревания образуется медный купорос (сульфат меди), вода и сернистый газ, который при помощи специальной трубочки нужно подвести к колбочке с чистой водой. Таким образом можно получить сернистую кислоту.

Помните, что сернистый газ вреден для человека. Он вызывает поражение дыхательных путей, потерю аппетита и головную боль. Длительное вдыхание может вызвать обморочное состояние. При работе с ним нужна осторожность.

Применение сернистой кислоты

Сернистая кислота обладает антисептическими свойствами. Ее применяют при обеззараживании поверхностей, ферментации зерна. С ее помощью можно некоторые вещества, которые при взаимодействии с сильными окислителями (например, хлором) разлагаются. К таким веществам относится шерсть, шелк, бумага и некоторые другие. Ее антибактериальные свойства используются для предотвращения брожения вина в . Таким образом благородный напиток может храниться очень долго, приобретая благородный вкус и неповторимый аромат.

Сернистую кислоту используют при производстве бумаги. Добавление этой кислоты входит в технологию получения сульфитной целлюлозы. Затем ее обрабатывают раствором гидросульфита кальция, чтобы связать волокна воедино.